246 research outputs found

    Adaptive offloading for infotainment systems

    Get PDF
    Infotainment applications in vehicles are currently supported both by the in-vehicle platform, as well as by user’s smart devices, such as smartphones and tablets. More and more the user expects that there is a continuous service of applications inside or outside of the vehicle, provided in any of these devices (a simple but common example is hands-free mobile phone calls provided by the vehicle platform). With the increasing complexity of ‘apps’, it is necessary to support increasing levels of Quality of Service (QoS), with varying resource requirements. Users may want to start listening to music in the smartphone, or video in the tablet, being this application transparently ‘moved’ into the vehicle when it is started. This paper presents an adaptable offloading mechanism, following a service-oriented architecture pattern, which takes into account the QoS requirements of the applications being executed when making decisions

    MHAV: multitier heterogeneous adaptive vehicular network with LTE and DSRC

    Get PDF
    Enabling cooperation between vehicles form vehicular networks, which provide safety, traffic efficiency and infotainment. The most vital of these applications require reliability and low latency. Considering these requirements, this paper presents a multitier heterogeneous adaptive vehicular (MHAV) network. Comprising of transport operator or authority owned vehicles in high tier and all the other privately owned vehicles in low tier, integrating cellular network with dedicated short range communications. The proposed framework is implemented and evaluated in Glasgow city center model. Simulation results demonstrate that the proposed architecture outperforms previous multitier architectures in terms of latency while offloading traffic from cellular networks

    Advancement in infotainment system in automotive sector with vehicular cloud network and current state of art

    Get PDF
    The automotive industry has been incorporating various technological advancement on top-end versions of the vehicle order to improvise the degree of comfortability as well as enhancing the safer driving system. Infotainment system is one such pivotal system which not only makes the vehicle smart but also offers abundance of information as well as entertainment to the driver and passenger. The capability to offer extensive relay of service through infotainment system is highly dependent on vehicular adhoc network as well as back end support of cloud environment. However, it is know that such legacy system of vehicular adhoc network is also characterized by various problems associated with channel capacity, latency, heterogeneous network processing, and many more. Therefore, this paper offers a comprehensive insight to the research work being carried out towards leveraging the infotainment system in order to obtain the true picture of strength, limitation, and open end problems associated with infotainment system

    Load Balancing towards ECU Integration

    Get PDF
    There has been an exponential increase in the number of electronic components embedded in vehicles. Development processes, techniques and tools have changed to accommodate that evaluation. A wide range of electronic functions such as navigation, adaptive control, infotainment, traffic information, safety system etc are implemented in today’s vehicles. Many of the new functions are not stand alone and hence they need to exchange information, sometimes with stringent time constraints for time critical functions such as engine management, collision warning systems etc. The complexity of the embedded architecture in a vehicle is continually increasing. Today up to 2500 signals are exchanged through up to 70 Electronic Control Units (ECUs) using 5 different buses. This paper introduces the load balancing approach across ECUs supplied by various Tier1 suppliers

    VANETs Multipath Video Data Streaming Considering Road Features

    Get PDF
    Multipath video streaming in Vehicular Ad-hoc Networks (VANETs) is an evolving research topic. The adoption of video transmission in VANETs communication has become essential due to the comprehensiveness and applicability of video data for on-road advertisement and infotainment. Meanwhile, several research studies have considered how to apply and improve the transmission of the video quality. Due to this, the concurrent multipath transmission has been employed in order to achieve load balancing and path diversity, because of the high data rate of the video data.  However, the main nature of the road, which is the pathway for VANET nodes has not been considered explicitly. In this paper, the road features are considered for VANETs multipath video streaming based on the greedy geographical routing protocol. Thus, VANETs Multipath Video Streaming based on Road Features (VMVS-RF) protocol has been proposed. The protocol was compared with an ordinary Multipath Video Streaming (MVS). The result demonstrates that the proposed VMVS-RF protocol outperforms the MVS in terms of Data Receiving Rate (DRR), Structural Similarity (SSIM) index and Packet Loss Ratio (PLR)

    A literature review on connected vehicle use cases

    Get PDF
    Abstract. Explosive growth of Internet of Things and cloud computing technologies has enabled the creation of more connected vehicles. As vehicles are becoming more connected the use cases of surrounding them are ambiguous. The goal of this thesis is to perform a literature review to see what use cases there are for connected vehicles, and if it is possible to categorize these use case scenarios to clear categories. The results of this thesis indicate that there are three main use case categories for connected vehicles. First category was vehicle state monitoring which was used to monitor vehicle’s diagnostic data, to monitor emission control tampering and to determine if the vehicle has had a collision. Second category were about vehicle management where connected vehicle technologies were used to deliver smart vehicle information services and to perform remote updating of a vehicle. Third category was vehicle state controlling, where use case scenarios of this category created an adaptive suspension control application and battery usage optimization application by utilizing cloud backend. Safe route assisting application also utilized cloud technologies. As well as remote control of a vehicle and digital twin based driving assist system. These use case categories could also be differentiated by their communication method between the vehicle and remote backend. There are three main communication methods; active communication where remote backend only sent data to vehicle, passive communication in which the remote backend was passive receiver of the vehicle data and hybrid two-way communication between vehicle and remote backend. Primary contribution of this thesis was that framework for defining different connected vehicle use case scenarios was established. Primary limitation of this thesis was that low amount of publications were considered for review, and for future research it is recommended to expand this topic to include more publications for review and to also consider what are the common characteristics in each use case scenario

    Smart Vehicle- to-Vehicle Communication with 5G Technology

    Get PDF
    Vehicle-to-vehicle (V2V) communication aim to avoid vehicular accident by providing advisory to the driver as less congestion, mishap warning, road investigation, etc. Technological developments in electronics, computing, identifying, robotics, control, signal processing, and communications makes this things possible. Different technology like WAVE) is based on the IEEE 802.11p standard , DSRC,CALM standard mainly used in v2v communication. One major technical challenge in all technology is to achieve low-latency in delivering emergency warnings in various road situations. 5G technology with its specific potential feature e.g. End to End latency -1ms,High data rate, mobility, traffic density makes V2V communication smart DOI: 10.17762/ijritcc2321-8169.150515

    Real-Time IoV Task Offloading through Dynamic Assignment of SDN Controllers: Algorithmic Approaches and Performance Evaluation

    Get PDF
    Task offloading in Internet of Vehicles (IoV) is very crucial. The widespread use of IoT applications frequently interacts with the cloud, thereby increasing the load on centralized cloud controllers. Centralized network management in cloud infrastructure is not feasible for the latest IoT trends. Decentralized and decoupled network management in Software Defined Networks (SDN) can enhance IoV services. SDN and IoV coupling can better handle task offloading in ubiquitous and dynamic IoV environments. However, appropriate SDN controller assignment and allotment strategies play a prominent role in IoV communication. In this study, we developed algorithms for SDN controller assignment and allotment namely 1) Next Fit Allotment and Assignment of SDN Controller in IoV (NFAAC), 2) Dynamic Bin Packing Allotment and Assignment of SDN Controller in IoV (DBPAAC), and 3) Dynamic Focused and Bidding Allotment and Assignment algorithm of SDN Controller in IoV (DFBAAC). These algorithms were simulated using open-flow switch controllers. The controllers were modeled as Road Side Units (RSU) that can allocate bandwidth and resource requirements to vehicles on the road. Our results show that our proposed algorithm works efficiently for SDN controller assignment and allocation, outperforming the existing work by a significant improvement of 13.5%. The working of the proposed algorithms are verified, tested, and analytically presented in this study

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V
    • …
    corecore