1,248 research outputs found

    Instrumentation and control of anaerobic digestion processes: a review and some research challenges

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11157-015-9382-6[EN] To enhance energy production from methane or resource recovery from digestate, anaerobic digestion processes require advanced instrumentation and control tools. Over the years, research on these topics has evolved and followed the main fields of application of anaerobic digestion processes: from municipal sewage sludge to liquid mainly industrial then municipal organic fraction of solid waste and agricultural residues. Time constants of the processes have also changed with respect to the treated waste from minutes or hours to weeks or months. Since fast closed loop control is needed for short time constant processes, human operator is now included in the loop when taking decisions to optimize anaerobic digestion plants dealing with complex solid waste over a long retention time. Control objectives have also moved from the regulation of key variables measured online to the prediction of overall process perfor- mance based on global off-line measurements to optimize the feeding of the processes. Additionally, the need for more accurate prediction of methane production and organic matter biodegradation has impacted the complexity of instrumentation and should include a more detailed characterization of the waste (e.g., biochemical fractions like proteins, lipids and carbohydrates)andtheirbioaccessibility andbiodegradability characteristics. However, even if in the literature several methodologies have been developed to determine biodegradability based on organic matter characterization, only a few papers deal with bioaccessibility assessment. In this review, we emphasize the high potential of some promising techniques, such as spectral analysis, and we discuss issues that could appear in the near future concerning control of AD processes.The authors acknowledge the financial support of INRA (the French National Institute for Agricultural Research), the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011) and ADEME for Inter-laboratory assay financial support.Jimenez, J.; Latrille, E.; Harmand, J.; Robles MartĂ­nez, Á.; Ferrer Polo, J.; Gaida, D.; Wolf, C.... (2015). Instrumentation and control of anaerobic digestion processes: a review and some research challenges. Reviews in Environmental Science and Biotechnology. 14(4):615-648. doi:10.1007/s11157-015-9382-6S615648144Aceves-Lara CA, Latrille E, Steyer JP (2010) Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor. Int J Hydrogen Energ 35:10710–10718Aguado D, Montoya T, Ferrer J, Seco A (2006) Relating ions concentration variations to conductivity variations in a sequencing batch reactor operated for enhanced biological phosphorus removal. Environ Modell Softw 21:845–851Aguilar-Garnica E, Dochain D, Alcaraz-GonzĂĄlez V, GonzĂĄlez-Álvarez V (2009) A multivariable control scheme in a two-stage anaerobic digestion system described by partial differential equations. J Process Contr 19:1324–1332Ahring BK, Angelidaki I, Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci Technol 25:311–318Ajeej A, Thanikal JV, Narayanan CM, Senthil Kumar R (2015) An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renew Sustain Energy Rev 50:270–276Alcaraz-GonzĂĄlez V, GonzĂĄlez-Álvarez V (2007) Selected topics in dynamics and control of chemical and biological processes. Springer, BerlinAlcaraz-GonzĂĄlez V, Harmand J, Rapaport A, Steyer JP, GonzĂĄlez-Álvarez V, Pelayo-Ortiz C (2005a) Robust interval-based regulation for anaerobic digestion processes. Water Sci Technol 52:449–456Alcaraz-GonzĂĄlez V, Salazar-Peña R, GonzĂĄlez-Alvarez V, GouzĂ© JL, Steyer JP (2005b) A tunable multivariable nonlinear robust observer for biological systems. C R Biol 328:317–325Alferes J, Irizar I (2010) Combination of extremum-seeking algorithms with effective hydraulic handling of equalization tanks to control anaerobic digesters. Water Sci Technol 61:2825–2834Alferes J, GarcĂ­a-Heras JL, Roca E, GarcĂ­a C, Irizar I (2008) Integration of equalisation tanks within control strategies for anaerobic reactors. Validation based on ADM1 simulations. Water Sci Technol 57:747–752Alimahmoodi M, Mulligan CN (2008) Anaerobic bioconversion of carbon dioxide to biogas in an upflow anaerobic sludge blanket reactor. J Air Waste Manage Assoc 58:95–103Alvarez JA, Otero L, Lema JM (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol 101:1153–1158Alvarez-Ramirez J, Meraz M, Monroy O, Velasco A (2002) Feedback control design for an anaerobic digestion process. J Chem Technol Biotechnol 77:725–734Anderson GK, Yang G (1992) Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environ Res 64:53–59Andrews JF, Graef SP (1971) Dynamic modelling and simulation of the AD process. Advances in chemistry series no. 105, Anaerobic Biological Treatment Processes. American Chemical Society, Washington, DC, p 126Andrews JF, Pearson EA (1965) Kinetics and characteristics of volatile acid production in anaerobic fermentation processes. Air Water Pollut 9:439–461Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropllutants. Rev Environ Sci Biotechnol 3:117–129Antila J, Tuohiniemi M, Rissanen A, KantojĂ€rvi U, Lahti M, Viherkanto K, Kaarre M, Malinen J (2014) MEMS- and MOEMS-based near-infrared spectrometers. Encycl Anal Chem 1–36. doi: 10.1002/9780470027318.a9376Antoniades CD, Christofides P (2001) Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes. Chem Eng Sci 56:4517–4535APHA (2005) American Public Health Association/American Water Works Association/Water Environmental Federation, Standard methods for the Examination of Water and Wastewater, 21st edn. Washington, DC, USAAppels L, Baeyens J, DegrĂšve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781Appels L, Lauwers J, Gins G, Degreve J, Van Impe J, Dewil R (2011) Parameter identification and modeling of the biochemical methane potential of waste activated sludge. Environ Sci Technol 45:4173–4178Aquino SF, Chernicharo CAL, Soares H, Takemoto SY, Vazoller RF (2008) Methodologies for determining the bioavailability and biodegradability of sludges. Environ Technol 29:855–862Astals S, Esteban-GutiĂ©rrez M, FernĂĄndez-ArĂ©valo T, Aymerich E, GarcĂ­a-Heras JL, Mata-Alvarez J (2013a) Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study. Water Res 47:6033–6043Astals S, Nolla-ArdĂšvol V, Mata-Alvarez J (2013b) Thermophilic co-digestion of pig manure and crude glycerol: process performance and digestate stability. J Biotechnol 166:97–104Babary JP, Julien S, NihtilĂ€ MT et al (1999) New boundary conditions and adaptive control of fixed-bed bioreactors. Chem Eng Process Process Intensif 38:35–44Barat R, Serralta J, Ruano MV, JimĂ©nez E, Ribes J, Seco A, Ferrer J (2012) Biological nutrient removal model No 2 (BNRM2): a general model for wastewater treatment plants. Water Sci Technol 67:1481–1489Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactors. Elsevier Science, AmsterdamBatstone DJ (2013) Modelling and control in anaerobic digestion: achievements and challenges. 13th IWA World Congress on Anaerobic Digestion (AD 13), pp 1–6Batstone DJ, Keller J, Angelidaki I et al (2002) Anaerobic digestion model No. 1. (ADM1). IWA Scientific and Technical Report No. 13. IWABatstone DJ, Tait S, Starrenburg D (2009) Estimation of hydrolysis parameters in full-scale anaerobic digesters. Biotechnol Bioeng 102:1513–1520Batstone DJ, Amerlinck Y, Ekama G et al (2012) Towards a generalized physicochemical framework. Water Sci Technol 66:1147–1161Baumann WT, Rugh WJ (1986) Feedback control of nonlinear systems by extended linearization. IEEE Trans Automat Contr AC-31:40–46Benyahia B, Campillo F, Cherki B, Harmand J (2012) Particle filtring for the chemostat. In: MED’12, Barcelone, SpainBernard O (2011) Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. J Process Control 21:1378–1389Bernard O, GouzĂ© JL (2004) Closed loop observers bundle for uncertain biotechnological models. J Process Control 14:765–774Bernard O, Hadj-Sadok Z, Dochain D et al (2001a) Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol Bioeng 75:424–438Bernard O, Polit M, Hadj-Sadok Z, Pengov M, Dochain D, Estaben M, Labat P (2001b) Advanced monitoring and control of anaerobic wastewater treatment plants: software sensors and controllers for an anaerobic digester. Water Sci Technol 43:175–182Bernard O, Chachuat B, HĂ©lias A, Rodriguez J (2005a) Can we assess the model complexity for a bioprocess? Theory and example of the anaerobic digestion process. Water Sci Technol 53:85–92Bernard O, Chachuat B, HĂ©lias A, Le Dantec B, Sialve B, Steyer JP, Lavigne JF (2005b) An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet. Water Sci Technol 52:457–464Björnsson L, Hörnsten EG, Mattiasson B (2001a) Utilization of a palladium–metal oxide semiconductor (Pd-MOS) sensor for on-line monitoring of dissolved hydrogen in anaerobic digestion. Biotechnol Bioeng 73:35–43Björnsson L, Murto M, Jantsch TG, Mattiasson B (2001b) Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res 35:2833–2840Boe K (2006) Online monitoring and control of the biogas process. Technical University of DenmarkBoe K, Batstone D, Angelidaki I (2007) An innovative online VFA monitoring system for the anerobic process, based on headspace gas chromatography. Biotechnol Bioeng 96:712–721Boe K, Steyer JP, Angelidaki I (2008) Monitoring and control of the biogas process based on propionate concentration using online VFA measurement. Water Sci Technol 57:661–766Boe K, Batstone DJ, Steyer JP, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501BuendĂ­a IM, FernĂĄndez FJ, Villaseñor J, RodrĂ­guez L (2008) Biodegradability of meat industry wastes under anaerobic and aerobic conditions. Water Res 42:3767–3774Buffiere P, Loisel D, Bernet N, Delgenes JP (2006) Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci Technol 53:233–241Cao Y, Pawlowski A (2012) Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: brief overview and energy efficiency assessment. Renew Sust Energ Rev 16:1657–1665Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111Carlos-Hernandez S, Beteau JF, Sanchez EN (2007) Intelligent control strategy for an anaerobic fluidized bed reactor. In: Michel P (ed) Computer applications in biotechnology, vol 1. Cancun, Mexico, pp 73–78Carlos-Hernandez S, Sanchez EN, Bueno JA (2010) Neurofuzzy control strategy for an abattoir wastewater treatment process. In: Banga JR, Bogaerts P, Van Impe J, Dochain D, Smets I (eds) 11th International symposium on computer applications in biotechnology. Leuven, Belgium, pp 84–89Chandler JA, Jewell WJ, Gossett JM (1980) Predicting methane fermentation biodegradability. Biotechnol Bioeng Symp 10:93–107Chen YH (1990) Adaptive robust observers for non-linear uncertain systems. Int J Syst Sci 21:803–814Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenerg 5:95–111Cirne DG, van der Zee FP, Fernandez-Polanco M, Fernandez-Polanco F (2008) Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnol 7:93–105ColombiĂ© S, Latrille E, Sablayrolles JM (2007) Online estimation of assimilable nitrogen by electrical conductivity measurement during alcoholic fermentation in enological conditions. J Biosci Bioeng 103:229–235Cord-Ruwisch R, Mercz TI, Hoh CY, Strong GE (1997) Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol Bioeng 56:626–634Cossu R, Raga R (2008) Test methods for assessing the biological stability of biodegradable waste. Waste Manage 28:381–388Cresson R, Pommier S, BĂ©line F et al (2014) Etude interlaboratoires pour l’harmonisation des protocoles de mesure du potentiel bio-mĂ©thanogĂšne des matrices solides hĂ©tĂ©rogĂšnes—Final report (in French) ADEMEDalmau J, Comas J, RodrĂ­guez-Roda I, Pagilla K, Steyer JP (2010) Model development and simulation for predicting risk of foaming in anaerobic digestion systems. Bioresour Technol 101:4306–4314Davidsson A, Gruvberger C, Christensen TH, Hansen TL, Jansen J (2007) Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manage 27:406–414De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290De Baere L (2008) Partial stream digestion of residual municipal solid waste. Water Sci Technol 57:1073–1077De Gracia M, Grau P, Huete E et al (2009) New generic mathematical model for WWTP sludge digesters operating under aerobic and anaerobic conditions: model building and experimental verification. Water Res 43:4626–4642De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 6:414–424Delattre C, Dochain D, Winkin J (2004) Observability analysis of nonlinear tubular (bio)reactor models: a case study. J Process Control 14:661–669Di Pinto AC, Limoni N, Passino R, Rozzi A, Tomei MC (1990) Instrumentation, control and automation of water and wastewater treatment and transport systems. In: Proceedings of the 5th IAWPRC workshop, pp 51–58DĂ­az I, PĂ©rez C, Alfaro N, Fdz-Polanco F (2015) A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour Technol 185:246–253Dochain D (2003) State and parameter estimation in chemical and biochemical processes: a tutorial. J Process Control 13:801–818Dochain D, Tali-Maamar N, Babary JP (1997) On modelling, monitoring and control of fixed bed bioreactors. Comput Chem Eng 21:1255–1266Dochain D, Perrier M, Guay M (2011) Extremum seeking control and its application to process and reaction systems: a survey. Math Comput Simulat 82:369–380Donoso-Bravo A, Garcia G, PĂ©rez-Elvira S, Fernandez-Polanco F (2011) Initial rates technique as a procedure to predict the anaerobic digester operation. Biochem Eng J 53(3):275–280Doublet J, Boulanger A, Ponthieux A, Laroche C, Poitrenaud M, Cacho Rivero JA (2013) Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresour Technol 128:252–258Dreywood R (1946) Qualitative test for carbohydrate material. Industrial & Engineering Chemistry Analytical Edition. Am Chem Soc 18:499Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Ekama GA, Sotemann SW, Wentzel MC (2007) Biodegradability of activated sludge organics under anaerobic conditions. Water Res 41:244–252Ellison WJ, Pedarros-Caubet F, Caubet R (2007) Automatic and rapid measurement of microbial suspension growth parameters: application to the evaluation of effector agents. J Rapid Meth Aut Mic 15:369–410Fang HHP (2012) Bioenergy production from waste and wastewater in China. In: Technical proceedings of the 2012 NSTI nanotechnology conference and expo, NSTI-nanotech 2012, pp 381–383Fannin KF, Chynoweth DP, Isaacson R (1987) Start-up, operation, stability, and control. Anaerob Dig Biomass 171–196Fdz-Polanco M, DĂ­az I, PĂ©rez SI, Lopes AC, Fdz-Polanco F (2009a) Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci Technol 60:3045–3050Fdz-Polanco M, PĂ©rez-Elvira SI, DĂ­az I, GarcĂ­a L, TorĂ­o R, Acevedo AF (2009b) EliminaciĂłn de H2S en digestiĂłn anaerobia de lodos por procesos microaerofĂ­licos: experiencia en planta piloto. Tecnol del Agua 29:58–64Feitkenhauer H, von Sachs J, Meyer U (2002) On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res 36:212–218FernĂĄndez YB, Soares A, Villa R, Vale P, Cartmell E (2014) Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste. Bioresour Technol 159:1–7Fountoulakis MS, Stamatelatou K, Lyberatos G (2008) The effect of pharmaceuticals on the kinetics of methanogenesis and acetogenesis. Bioresour Technol 99:7083–7090Francioso O, Rodriguez-Estrada MT, Montecchio D, Salomoni C, Caputo A, Palenzona D (2010) Chemical characterization of municipal wastewater sludges produced by two-phase anaerobic digestion for biogas production. J Hazard Mater 175:740–746Frigon JC, Roy C, Guiot SR (2012) Anaerobic co-digestion of dairy manure with mulched switchgrass for improvement of the methane yield. Bioprocess Biosyst Eng 35:341–349Frings CS, Dunn RT (1970) A colorimetric method for determination of total serum lipids based on the sulfo-phospho-vanillin reaction. Am J Clin Pathol 53:89–91FrĂžlund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758Gaida D, Wolf C, Meyer C, Stuhlsatz A, Lippel J, BĂ€ck T, Bongards M, McLoone S (2012) State estimation for anaerobic digesters using the ADM1. Water Sci Technol 66:1088–1095Ganesh R, Torrijos M, Sousbie P et al (2013) Anaerobic co-digestion of solid waste: effect of increasing organic loading rates and characterization of the solubilised organic matter. Bioresource Technol 130:559–569GarcĂ­a-DiĂ©guez C, Molina F, Roca E (2011) Multi-objective cascade controller for an anaerobic digester. Process Biochem 46:900–909GarcĂ­a-Gen (2015) Modelling, optimisation and control of anaerobic co-digestion processes (2015), Ph.D. Thesis, Universidad de Santiago de Compostela, Departamento de IngenierĂ­a QuĂ­micaGarcĂ­a-Gen S, Sousbie P, Rangaraj G et al (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag 35:96–104Gauthier JP, Kupka IAK (1994) Observability and observers for nonlinear systems. SIAM J Control Optim 32:975–994Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems applications to bioreactors. Autom Control IEEE Trans 37:875–880Ge H, Jensen PD, Batstone DJ (2011) Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. J Hazard Mater 187:355–361Gendron S, Perrier M, Barrett J, Legault N (1993) Adaptive control of brightness: the model weighting approach. Annual meeting—technical section, Canadian Pulp and Paper Association, Preprints. Publ by Canadian Pulp & Paper AssocGhosh S, Conrad JR, Klass DL (1975) Anaerobic acidogenesis of waste activated sludge, WPCF 47Goffaux G, Van de Wouwer A (2005) Bioprocess state estimation: some classical and less classical approaches. Springer, BerlinGornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biochem Chem 177:751–766GouzĂ© JL, Rapaport A, Hadj-Sadok MZ (2000) Interval observers for uncertain biological systems. Ecol Model 133:45–56Grau P, de Gracia M, Vanrolleghem PA, Ayesa E (2007) A new plant-wide modelling methodology for WWTPs. Water Res 41:4357–4372Gregersen KH (2003) Økonomien i biogasfĂŠllesanlĂŠg, Udvikling og status medio (2002) Report no. 150. Institute of Food and Resource Economic, Rolighedsvej 25, DK 1958, Frederiksberg C, DenmarkGrepmeier M (2002) Experimentelle Untersuchungen an einer zweistufigen fuzzy-geregelten anaeroben Abwasserreinigungsanlage mit neuartigem Festbettmaterial. TU MunichGuay M, Dochain D, Perrier M (2004) Adaptive extremum seeking control of continuous stirred tank bioreactors with unknown growth kinetics. Automatica 40:881–888Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98:1270–1277Gunaseelan VN (2009) Predicting ultimate methane yields of Jatropha curcus and Morus indica from their chemical composition. Bioresour Technol 100:3426–3429Guwy AJ, Hawkes FR, Wilcox SJ, Hawkes DL (1997) Neural network and on-off control of bicarbonate alkalinity in a fluidised-bed anaerobic digester. Water Res 31:2019–2025Guwy AJ, Dinsdale RM, Kim JR et al (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542Hao OJ (2003) Sulphate-reducing bacteria. In: Mara D, Horan N (eds) Handbook of water and wastewater microbiology. Academic Press Inc, London, pp 459–468HarremoĂ«s P, Capodaglio AG, H

    Fermentation: Metabolism, Kinetic Models, and Bioprocessing

    Get PDF
    Biochemical and metabolic interpretation of microbial growth is an important topic in bioreactor design. We intend to address valuable information about the relation of critical operation variables and the simulation of bioprocesses with unstructured and structured kinetic models. Process parameters such as nutrient supply, pH, dissolved oxygen, and metabolic end-products directly impact the physiology and metabolism of microorganisms. Changes in the membrane as well as cell viability are of interest since protein expression and maturation in prokaryota are directly related to membrane integrity. This chapter intends to deliver an insight of different alternatives in kinetic modeling

    Monitoring and Fault Diagnosis for Chylla-Haase Polymerization Reactor

    Get PDF
    The main objective of this research is to develop a fault detection and isolation (FDI) methodologies for Cylla-Haase polymerization reactor, and implement the developed methods to the nonlinear simulation model of the proposed reactor to evaluate the effectiveness of FDI methods. The first part of this research focus of this chapter is to understand the nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor. In this part, the mathematical model of the proposed reactor is described. The Simulink model of the proposed reactor is set up using Simulink/MATLAB. The design of Simulink model is developed based on a set of ordinary differential equations that describe the dynamic behaviour of the proposed polymerization reactor. An independent radial basis function neural networks (RBFNN) are developed and employed here for an on-line diagnosis of actuator and sensor faults. In this research, a robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic semi-batch polymerization reactor described by Chylla-Haase. The independent (RBFNN) is employed here when the system is subjected to system uncertainties and disturbances. Two different techniques to employ RBF neural networks are investigated. Firstly, an independent neural network is used to model the reactor dynamics and generate residuals. Secondly, an additional RBF neural network is developed as a classifier to isolate faults from the generated residuals. In the third part of this research, a robust fault detection and isolation (FDI) scheme is developed to monitor the Chylla-Haase polymerization reactor, when it is under the cascade PI control. This part is really challenging task as the controller output cannot be designed when the reactor is under closed-loop control, and the control action will correct small changes of the states caused by faults. The proposed FDI strategy employed a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. In this research, an independent MLP neural network is implemented here to generate residuals for detection task. And another RBF is applied for isolation task performing as a classifier. The fault diagnosis scheme is developed for a Chylla-Haase reactor under open-loop and closed-loop control system. The comparison between these two neural network architectures (MPL and RBF) are shown that RBF configuration trained by (RLS) algorithm have several advantages. The first one is greater efficiency in finding optimal weights for field strength prediction in complex dynamic systems. The RBF configuration is less complex network that results in faster convergence. The training algorithms (RLs and ROLS) that used for training RBFNN in chapter (4) and (5) have proven to be efficient, which results in significant faster computer time in comparison to back-propagation one. Another fault diagnosis (FD) scheme is developed in this research for an exothermic semi-batch polymerization reactor. The scheme includes two parts: the first part is to generate residual using an extended Kalman filter (EKF), and the second part is the decision making to report fault using a standardized hypothesis of statistical tests. The FD simulation results are presented to demonstrate the effectiveness of the proposed method. In the lase section of this research, a robust fault diagnosis scheme for abrupt and incipient faults in nonlinear dynamic system. A general framework is developed for model-based fault detection and diagnosis using on-line approximators and adaptation/learning schemes. In this framework, neural network models constitute an important class of on-line approximators. The changes in the system dynamics due to fault are modelled as nonlinear functions of the state, while the time profile of the fault is assumed to be exponentially developing. The changes in the system dynamics are monitored by an on-line approximation model, which is used for detecting the failures. A systematic procedure for constructing nonlinear estimation algorithm is developed, and a stable learning scheme is derived using Lyapunov theory. Simulation studies are used to illustrate the results and to show the effectiveness of the fault diagnosis methodology. Finally, the success of the proposed fault diagnosis methods illustrates the potential of the application of an independent RBFNN, an independent MLP, an Extended kalman filter and an adaptive nonlinear observer based FD, to chemical reactors

    Full-scale digesters: an online model parameter identification strategy

    Full text link
    This work presents a new standard in the model, identification, and control of monitoring purposes over anaerobic reactors. One requirement that guarantees a normal controller operation is for the faculty to measure the data needed periodically. Due to its inability to easily obtain the concentrations of acidogenic bacteria and methanogenic archaea periodically using reliable and commercial sensors, this paper presents an algorithm composed of an asymptotic observer (considering the reaction rates are unknown), aiming to estimate these concentrations. This method represents a significant advantage because it is possible to perform a resource-saving strategy using standard measurements, such as pH or alkalinity, to calculate them analytically in natural environments. Additionally, two yield parameters were included in the original anaerobic model two (AM2) to unlock implementations for a wide range of organic substrates. The static parameter identification was improved using a new method called step-ahead optimization. It demonstrates significant improvements fitting the mathematical model to data until a (Formula presented.) increase in efficiency (compared with the traditional optimization method genetic algorithm). After the period of convergence, the state observer evidences a small error with a maximum (Formula presented.) deviation. Finally, numerical simulations demonstrate the structure’s strengths, which constitutes a significant step in paving the way further to implement feasible, cost-effective controls and monitoring systems in the industr

    Neural Network-based Finite-time Control of Nonlinear Systems with Unknown Dead-zones: Application to Quadrotors

    Get PDF
    Over the years, researchers have addressed several control problems of various classes of nonlinear systems. This article considers a class of uncertain strict feedback nonlinear system with unknown external disturbances and asymmetric input dead-zone. Designing a tracking controller for such system is very complex and challenging. This article aims to design a finite-time adaptive neural network backstepping tracking control for the nonlinear system under consideration. In addition,  all unknown disturbances and nonlinear functions are lumped together and approximated by radial basis function neural network (RBFNN). Moreover, no prior  information about the boundedness of the dead-zone parameters is required in the controller design. With the aid of a Lyapunov candidate function, it has been shown that the tracking errors converge near the origin in finite-time. Simulation results testify that the proposed control approach can force the output to follow the reference trajectory in a short time despite the presence of  asymmetric input dead-zone and external disturbances. At last, in order to highlight the effectiveness of the proposed control method, it is applied to a quadrotor unmanned aerial vehicle (UAV)

    Robust fault diagnosis for an exothermic semi-batch polymerization reactor under open-loop

    Get PDF
    An independent radial basis function neural network (RBFNN) is developed and employed here for an online diagnosis of actuator and sensor faults. In this research, a robust fault detection and isolation scheme is developed for an open-loop exothermic semi-batch polymerization reactor described by Chylla–Haase. The independent RBFNN is employed here for online diagnosis of faults when the system is subjected to system uncertainties and disturbances. Two different techniques to employ RBFNNs are investigated. Firstly, an independent neural network (NN) is used to model the reactor dynamics and generate residuals. Secondly, an additional RBFNN is developed as a classifier to isolate faults from the generated residuals. Three sensor faults and one actuator fault are simulated on the reactor. Moreover, many practical disturbances and system uncertainties, such as monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise, are modelled. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft
    • 

    corecore