704 research outputs found

    A priori error analysis for transient problems using Enhanced Velocity approach in the discrete-time setting

    Get PDF
    Time discretization along with space discretization is important in the numerical simulation of subsurface flow applications for long run. In this paper, we derive theoretical convergence error estimates in discrete-time setting for transient problems with the Dirichlet boundary condition. Enhanced Velocity Mixed FEM as domain decomposition method is used in the space discretization and the backward Euler method and the Crank-Nicolson method are considered in the discrete-time setting. Enhanced Velocity scheme was used in the adaptive mesh refinement dealing with heterogeneous porous media [1, 2] for single phase flow and transport and demonstrated as mass conservative and efficient method. Numerical tests validating the backward Euler theory are presented. This error estimates are useful in the determining of time step size and the space discretization size. References. [1] Yerlan Amanbek, Gurpreet Singh, Mary F Wheeler, and Hans van Duijn. Adaptive numerical homogenization for upscaling single phase flow and transport. ICES Report,12:17, 2017. [2] Gurpreet Singh, Yerlan Amanbek, and Mary F Wheeler. Adaptive homogenization for upscaling heterogeneous porous medium. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2017

    Multiscale simulations of porous media flows in flow-based coordinate system

    Get PDF
    In this paper, we propose a multiscale technique for the simulation of porous media flows in a flow-based coordinate system. A flow-based coordinate system allows us to simplify the scale interaction and derive the upscaled equations for purely hyperbolic transport equations. We discuss the applications of the method to two-phase flows in heterogeneous porous media. For two-phase flow simulations, the use of a flow-based coordinate system requires limited global information, such as the solution of single-phase flow. Numerical results show that one can achieve accurate upscaling results using a flow-based coordinate system

    Nonlinear nonlocal multicontinua upscaling framework and its applications

    Full text link
    In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation

    A Framework for Modeling Subgrid Effects for Two-Phase Flows in Porous Media

    Get PDF
    In this paper, we study upscaling for two-phase flows in strongly heterogeneous porous media. Upscaling a hyperbolic convection equation is known to be very difficult due to the presence of nonlocal memory effects. Even for a linear hyperbolic equation with a shear velocity field, the upscaled equation involves a nonlocal history dependent diffusion term, which is not amenable to computation. By performing a systematic multiscale analysis, we derive coupled equations for the average and the fluctuations for the two-phase flow. The homogenized equations for the coupled system are obtained by projecting the fluctuations onto a suitable subspace. This projection corresponds exactly to averaging along streamlines of the flow. Convergence of the multiscale analysis is verified numerically. Moreover, we show how to apply this multiscale analysis to upscale two-phase flows in practical applications

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Mini-Workshop: Numerical Upscaling for Flow Problems: Theory and Applications

    Get PDF
    The objective of this workshop was to bring together researchers working in multiscale simulations with emphasis on multigrid methods and multiscale finite element methods, aiming at chieving of better understanding and synergy between these methods. The goal of multiscale finite element methods, as upscaling methods, is to compute coarse scale solutions of the underlying equations as accurately as possible. On the other hand, multigrid methods attempt to solve fine-scale equations rapidly using a hierarchy of coarse spaces. Multigrid methods need “good” coarse scale spaces for their efficiency. The discussions of this workshop partly focused on approximation properties of coarse scale spaces and multigrid convergence. Some other presentations were on upscaling, domain decomposition methods and nonlinear multiscale methods. Some researchers discussed applications of these methods to reservoir simulations, as well as to simulations of filtration, insulating materials, and turbulence
    corecore