1,832 research outputs found

    Nonlinear decentralized disturbance attenuation excitation control via new recursive design for multi-machine power systems

    Get PDF
    In this paper, a new nonlinear decentralized disturbance attenuation excitation control for multi-machine power systems is proposed based on recursive design without linearization treatment. The proposed controller improves system robustness to dynamic uncertainties and also attenuates bounded exogenous disturbances on the system in the sense of L 2-gain [1]. Computer test results on a 6-machine system show clearly that the proposed excitation control strategy can enhance transient stability of power systems more effectively than other excitation controllers.published_or_final_versio

    Decentralized adaptive neural network control of interconnected nonlinear dynamical systems with application to power system

    Get PDF
    Traditional nonlinear techniques cannot be directly applicable to control large scale interconnected nonlinear dynamic systems due their sheer size and unavailability of system dynamics. Therefore, in this dissertation, the decentralized adaptive neural network (NN) control of a class of nonlinear interconnected dynamic systems is introduced and its application to power systems is presented in the form of six papers. In the first paper, a new nonlinear dynamical representation in the form of a large scale interconnected system for a power network free of algebraic equations with multiple UPFCs as nonlinear controllers is presented. Then, oscillation damping for UPFCs using adaptive NN control is discussed by assuming that the system dynamics are known. Subsequently, the dynamic surface control (DSC) framework is proposed in continuous-time not only to overcome the need for the subsystem dynamics and interconnection terms, but also to relax the explosion of complexity problem normally observed in traditional backstepping. The application of DSC-based decentralized control of power system with excitation control is shown in the third paper. On the other hand, a novel adaptive NN-based decentralized controller for a class of interconnected discrete-time systems with unknown subsystem and interconnection dynamics is introduced since discrete-time is preferred for implementation. The application of the decentralized controller is shown on a power network. Next, a near optimal decentralized discrete-time controller is introduced in the fifth paper for such systems in affine form whereas the sixth paper proposes a method for obtaining the L2-gain near optimal control while keeping a tradeoff between accuracy and computational complexity. Lyapunov theory is employed to assess the stability of the controllers --Abstract, page iv

    Output-feedback design for non-smooth mechanical systems : control synthesis and experiments

    Get PDF
    In this thesis, the focus is on two control problems for non-smooth systems. Firstly, the disturbance attenuation problem for piecewise linear (PWL) and piecewise affine (PWA) systems is studied. Here, we focus on applications in the field of perturbed flexible mechanical systems with PWL restoring characteristics. Secondly, the stabilization problem for Lur’e type systems with set-valued nonlinearities is examined. In the latter context, the focus is on the application area of mechanical systems with set-valued friction characteristics, where the friction is non-collocated with the control action. In this thesis, in order to deal with both the disturbance attenuation problem and the stabilization problem, observer-based output-feedback control strategies are proposed. More specifically, the disturbance attenuation problem for perturbed PWL and PWA mechanical systems is an important control problem. Namely, the attenuation of the disturbances acting on these systems is important because it avoids damages to the structures and allows for increased system performance. Classical examples of mechanical systems with PWL and PWA restoring characteristics are tower cranes, suspension bridges, snubbers on solar panels on satellites, floating platforms for oil exploration, etc. Therefore, a controller design strategy is proposed for a class of perturbed PWL/PWA systems based on the notions of convergence and input-to-state convergence. The control design aims at the performance of such control designs in terms of disturbance attenuation for the specific class of periodic disturbances and the more general class of bounded disturbances. Roughly speaking, a system that is convergent, has, for each bounded disturbance, a unique globally asymptotically stable steady-state solution that is bounded for all time. A system is input-to-state convergent for a class of bounded disturbances if it is convergent and ISS with respect to the system’s unique steady-state solution. The input-to-state convergence property is instrumental in constructing output-feedback schemes. In the present work, we render a system convergent by means of feedback. To guarantee the practical applicability of the convergence-based controllers, a saturation constraint is proposed that provides a guaranteed upper bound on the control input, given an upper bound for the disturbances and a set of initial conditions. Next, an ultimate bound for the system state given a bound on the disturbances is proposed. Finally, performance measures based on computed steady-state responses for a specific class of disturbances (in our case harmonic disturbances) are presented. The motivation for the choice of harmonic disturbances lies in the fact that in engineering practice many disturbances can be approximated by a finite sum of harmonic signals (or are even harmonic as in systems with mass-unbalance). The ultimate objective of this part of the thesis is the implementation of the controller design strategy in an experimental environment, which implies that only measurements of a limited number of state variables will be available. Therefore, observers for PWL/PWA systems are used and a result that combines the controller and the observer in an outputfeedback strategy is provided. The convergent-based controller design strategy is applied to an experimental piecewise linear system and its effectiveness is shown in experiments. The stabilization of mechanical systems with friction is another challenging unsolved control problem because the presence of friction can induce unwanted phenomena such as self-sustained vibrations, chatter and squeal. These phenomena are unwanted in many engineering applications because they can destabilize a system and/or limit the system performance. Classical examples of mechanical systems with friction are industrial robots, drilling rigs, turbine blade dampers, accurate mirror positioning systems on satellites, printers and many more. Therefore, a control design strategy is proposed for a class of discontinuous systems; namely Lur’e systems with set-valued mappings. Here the focus is on the application area of mechanical systems with discontinuous friction. These systems exhibit unwanted (stick-slip) limit cycling which we aim to avoid entirely by the control design. In this work, we consider the problem of noncollocated friction and actuation, which rules out the application of common friction compensation techniques. The control design strategy proposed here is based on the notion of passivity and the Popov criterion. In addition to that, it is shown that the resulting closed-loop system is robust with respect to uncertainties in the discontinuous friction model under some mild constraints for the model that describes the friction. Once again, the aim is to implement this strategy on a mechanical experimental set-up with limited measurements. Therefore, an observer for Lur’e systems with multi-valued mappings is used as a state estimator and a result that combines the controller and the observer in an output-feedback strategy is provided. The passivity-based controller design strategy is implemented on a dynamic rotor system with friction in one of its components. The implemented output-feedback controller is evaluated in both simulations and experiments. Generally speaking, to show the strengths, weaknesses and potential of output-feedback controllers beyond their theoretical importance, it is indispensable to evaluate them in experimental and industrial setups. As such the presented case studies can be considered as benchmarks for the proposed observer-based controller designs for non-smooth and discontinuous systems. The value of non-smooth and discontinuous models and observer-based controllers is also evidenced by this work, as it demonstrates the effectiveness for real-life applications

    Frequency-dependent Switching Control for Disturbance Attenuation of Linear Systems

    Full text link
    The generalized Kalman-Yakubovich-Popov lemma as established by Iwasaki and Hara in 2005 marks a milestone in the analysis and synthesis of linear systems from a finite-frequency perspective. Given a pre-specified frequency band, it allows us to produce passive controllers with excellent in-band disturbance attenuation performance at the expense of some of the out-of-band performance. This paper focuses on control design of linear systems in the presence of disturbances with non-strictly or non-stationary limited frequency spectrum. We first propose a class of frequency-dependent excited energy functions (FD-EEF) as well as frequency-dependent excited power functions (FD-EPF), which possess a desirable frequency-selectiveness property with regard to the in-band and out-of-band excited energy as well as excited power of the system. Based upon a group of frequency-selective passive controllers, we then develop a frequency-dependent switching control (FDSC) scheme that selects the most appropriate controller at runtime. We show that our FDSC scheme is capable to approximate the solid in-band performance while maintaining acceptable out-of-band performance with regard to global time horizons as well as localized time horizons. The method is illustrated by a commonly used benchmark model

    Hamiltonian Theory Based Coordinated Nonlinear Control of Generator Excitation and STATCOMs

    Get PDF
    A coordinated controller for generator excitation and STATCOMs is studied based on the Hamiltonian function method. The Hamiltonian realization structure for multimachine power systems including STATCOMs is developed leading to a proposed coordinated scheme of excitation control and STATCOM control. Simulation results illustrate the effectiveness of the proposed control strategy

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances
    • …
    corecore