8 research outputs found

    Robust contact force controller for slip prevention in a robotic gripper

    Get PDF
    Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used with a suitable slip sensor to regulate the contact force and prevent slip. Furthermore, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. In this paper, a fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The controller is based on a system model that is suitable for a wide class of robotic gripper configurations. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays), and the controller performance was reduced

    Control techniques for mechatronic assisted surgery

    Get PDF
    The treatment response for traumatic head injured patients can be improved by using an autonomous robotic system to perform basic, time-critical emergency neurosurgery, reducing costs and saving lives. In this thesis, a concept for a neurosurgical robotic system is proposed to perform three specific emergency neurosurgical procedures; they are the placement of an intracranial pressure monitor, external ventricular drainage, and the evacuation of chronic subdural haematoma. The control methods for this system are investigated following a curiosity led approach. Individual problems are interpreted in the widest sense and solutions posed that are general in nature. Three main contributions result from this approach: 1) a clinical evidence based review of surgical robotics and a methodology to assist in their evaluation, 2) a new controller for soft-grasping of objects, and 3) new propositions and theorems for chatter suppression sliding mode controllers. These contributions directly assist in the design of the control system of the neurosurgical robot and, more broadly, impact other areas outside the narrow con nes of the target application. A methodology for applied research in surgical robotics is proposed. The methodology sets out a hierarchy of criteria consisting of three tiers, with the most important being the bottom tier and the least being the top tier. It is argued that a robotic system must adhere to these criteria in order to achieve acceptability. Recent commercial systems are reviewed against these criteria, and are found to conform up to at least the bottom and intermediate tiers. However, the lack of conformity to the criteria in the top tier, combined with the inability to conclusively prove increased clinical benefit, particularly symptomatic benefit, is shown to be hampering the potential of surgical robotics in gaining wide establishment. A control scheme for soft-grasping objects is presented. Grasping a soft or fragile object requires the use of minimum contact force to prevent damage or deformation. Without precise knowledge of object parameters, real-time feedback control must be used to regulate the contact force and prevent slip. Moreover, the controller must be designed to have good performance characteristics to rapidly modulate the fingertip contact force in response to a slip event. A fuzzy sliding mode controller combined with a disturbance observer is proposed for contact force control and slip prevention. The robustness of the controller is evaluated through both simulation and experiment. The control scheme was found to be effective and robust to parameter uncertainty. When tested on a real system, however, chattering phenomena, well known to sliding mode research, was induced by the unmodelled suboptimal components of the system (filtering, backlash, and time delays). This reduced the controller performance. The problem of chattering and potential solutions are explored. Real systems using sliding mode controllers, such as the control scheme for soft-grasping, have a tendency to chatter at high frequencies. This is caused by the sliding mode controller interacting with un-modelled parasitic dynamics at the actuator-input and sensor-output of the plant. As a result, new chatter-suppression sliding mode controllers have been developed, which introduce new parameters into the system. However, the effect any particular choice of parameters has on system performance is unclear, and this can make tuning the parameters to meet a set of performance criteria di cult. In this thesis, common chatter-suppression sliding mode control strategies are surveyed and simple design and estimation methods are proposed. The estimation methods predict convergence, chattering amplitude, settling time, and maximum output bounds (overshoot) using harmonic linearizations and invariant ellipsoid sets

    Reflex: A Closed-Loop Tactile Feedback System for Use in Upper Limb Prosthesis Grip Control

    Get PDF
    Tactile sensing provides valuable insight to the environment in which we interact with. Upper limb amputees lack the sensations that generates the necessary information to stably grasp the wide variety of objects we interact with on a daily basis. Utilizing tactile sensing to provide feedback to a prosthetic hand provides a mechanism for replacing the grip control functionality of the mechanoreceptors found in human skin. Novel customizable, low cost tactile sensors for monitoring the dynamics of an object grasped by a prosthetic hand are developed and presented as part of this thesis. The response of sensors placed on a prosthetic hand provides information regarding the state of a grasped object, particularly contact and slip. The sensors are made up of various textile materials, including stretchable interfacing layers and conductive traces. Essentially a force sensitive resistor, each sensor is shaped into stretchable cu ff that can be placed around the finger of a prosthetic hand. An outer rubber layer on the sensor provides compliance, which is found to enhance grasping performance with a prosthesis. Two control algorithms were developed as part of the closed-loop tactile feedback system, called Reflex, to enhance grasping functionality with a prosthesis. A Contact Detection strategy uses force information to effectively reduce the user's electromyography (EMG) signals, which are used to control the prosthesis. Essentially, the goal of this strategy is to help a user grab fragile objects without breaking them. A second strategy, Slip Prevention, uses the derivative of a force signal to detect slip of a grasped object. Instances of slip trigger electrical pulses sent from the prosthesis control unit to close the hand in an effort to prevent additional slip. The Reflex system, comprised of two control strategies along with flexible textile based force sensors on the fingers of a prosthesis, was shown to improve the grasping functionality of a prosthesis under normal use conditions. Able body participants were used to test the system. Results show the sensors' ability to greatly enhance grasping fragile objects while also helping prevent object slip. The compliant nature of the sensors enables users to more confidently pick up and move small,fragile objects, such as foam peanuts and crackers. Without sensors and tactile feedback, users had a higher likelihood of breaking objects while grabbing them. The addition of sensors reduced this failure rate, and the failure rate was reduced even further with the implementation of control algorithms running in real-time. The slip prevention strategy was also shown to help reduce the amount of object movement after a grasp is initiated, although the most benefit comes from the compliant nature of the sensors. Reflex is the first closed-loop tactile feedback system with multiple control strategies that can be used on a prosthetic hand to enhance grasping functionality. The system allows one to switch between Contact Detection or Slip Prevention control strategies, giving the user the ability to use each control as needed. Feedback from the textile sensors directly to the prosthesis control unit provides valuable information regarding grasping forces. This research aims to help improve prosthetic technology so that one day amputees will feel as if their device is a natural extension of their body

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale

    Modular Robots Morphology Transformation And Task Execution

    Get PDF
    Self-reconfigurable modular robots are composed of a small set of modules with uniform docking interfaces. Different from conventional robots that are custom-built and optimized for specific tasks, modular robots are able to adapt to many different activities and handle hardware and software failures by rearranging their components. This reconfiguration capability allows these systems to exist in a variety of morphologies, and the introduced flexibility enables self-reconfigurable modular robots to handle a much wider range of tasks, but also complicates the design, control, and planning. This thesis considers a hierarchy framework to deploy modular robots in the real world: the robot first identifies its current morphology, then reconfigures itself into a new morphology if needed, and finally executes either manipulation or locomotion tasks. A reliable system architecture is necessary to handle a large number of modules. The number of possible morphologies constructed by modules increases exponentially as the number of modules grows, and these morphologies usually have many degrees of freedom with complex constraints. In this thesis, hardware platforms and several control methods and planning algorithms are developed to build this hierarchy framework leading to the system-level deployment of modular robots, including a hybrid modular robot (SMORES-EP) and a modular truss robot (VTT). Graph representations of modular robots are introduced as well as several algorithms for morphology identification. Efficient mobile-stylereconfiguration strategies are explored for hybrid modular robots, and a real-time planner based on optimal control is developed to perform dexterous manipulation tasks. For modular truss robots, configuration space is studied and a hybrid planning framework (sampling-based and search-based) is presented to handle reconfiguration activities. A non-impact rolling locomotion planner is then developed to drive an arbitrary truss robot in an environment
    corecore