251 research outputs found

    Adaptive neural network control of a robotic manipulator with unknown backlash-like hysteresis

    Get PDF
    This study proposes an adaptive neural network controller for a 3-DOF robotic manipulator that is subject to backlashlike hysteresis and friction. Two neural networks are used to approximate the dynamics and the hysteresis non-linearity. A neural network, which utilises a radial basis function approximates the robot's dynamics. The other neural network, which employs a hyperbolic tangent activation function, is used to approximate the unknown backlash-like hysteresis. The authors also consider two cases: full state and output feedback control. For output feedback, where system states are unknown, a high gain observer is employed to estimate the states. The proposed controllers ensure the boundedness of the control signals. Simulations are also performed to show the effectiveness of the controllers

    Uncertainty and disturbance estimator-based control of a flapping-wing aerial vehicle withwith unknown backlash-like hysteresis

    Get PDF
    Robust and accurate control of a flapping-wing aerial vehicle (FWAV) system is a challenging problem due to the existence of backlash-like hysteresis nonlinearity. This paper proposes uncertainty and disturbance estimator (UDE)-based control with output feedback for FWAV systems. The approach enables the acquisition of the approximate plant model with only a partial knowledge of system parameters. For the design of the controller, only the bandwidth information of the unknown plant model is needed, which is available through the UDE filter. The stability analysis of the closed-loop system with the UDE-based controller is presented. It is shown that the proposed control scheme can ensure the boundedness of the control signals. A number of numerical simulations are carried out to demonstrate the satisfactory trajectory tracking performance of the proposed method

    Dual-Loop Adaptive Iterative Learning Control for a Timoshenko Beam With Output Constraint and Input Backlash

    Get PDF

    Adaptive inverse control of a vibrating coupled vessel-riser system with input backlash

    Get PDF
    This article involves the adaptive inverse control of a coupled vessel-riser system with input backlash and system uncertainties. By introducing an adaptive inverse dynamics of backlash, the backlash control input is divided into a mismatch error and an expected control command, and then a novel adaptive inverse control strategy is established to eliminate vibration, tackle backlash, and compensate for system uncertainties. The bounded stability of the controlled system is analyzed and demonstrated by exploiting the Lyapunov’s criterion. The simulation comparison experiments are finally presented to verify the feasibility and effectiveness of the control algorithm

    Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance

    Get PDF
    The actuator failure compensation control problem of robotic systems possessing dynamic uncertainties has been investigated in this paper. Control design against partial loss of effectiveness (PLOE) and total loss of effectiveness (TLOE) of the actuator are considered and described, respectively, and a disturbance observer (DO) using neural networks is constructed to attenuate the influence of the unknown disturbance. Regarding the prescribed error bounds as time-varying constraints, the control design method based on barrier Lyapunov function (BLF) is used to strictly guarantee both the steady-state performance and the transient performance. A simulation study on a two-link planar manipulator verifies the effectiveness of the proposed controllers in dealing with the prescribed performance, the system uncertainties, and the unknown actuator failure simultaneously. Implementation on a Baxter robot gives an experimental verification of our controller

    Robust neurooptimal control for a robot via adaptive dynamic programming

    Get PDF
    We aim at the optimization of the tracking control of a robot to improve the robustness, under the effect of unknown nonlinear perturbations. First, an auxiliary system is introduced, and optimal control of the auxiliary system can be seen as an approximate optimal control of the robot. Then, neural networks (NNs) are employed to approximate the solution of the Hamilton-Jacobi-Isaacs equation under the frame of adaptive dynamic programming. Next, based on the standard gradient attenuation algorithm and adaptive critic design, NNs are trained depending on the designed updating law with relaxing the requirement of initial stabilizing control. In light of the Lyapunov stability theory, all the error signals can be proved to be uniformly ultimately bounded. A series of simulation studies are carried out to show the effectiveness of the proposed control

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty
    • …
    corecore