11,084 research outputs found

    Data-based mechanistic modelling, forecasting, and control.

    Get PDF
    This article briefly reviews the main aspects of the generic data based mechanistic (DBM) approach to modeling stochastic dynamic systems and shown how it is being applied to the analysis, forecasting, and control of environmental and agricultural systems. The advantages of this inductive approach to modeling lie in its wide range of applicability. It can be used to model linear, nonstationary, and nonlinear stochastic systems, and its exploitation of recursive estimation means that the modeling results are useful for both online and offline applications. To demonstrate the practical utility of the various methodological tools that underpin the DBM approach, the article also outlines several typical, practical examples in the area of environmental and agricultural systems analysis, where DBM models have formed the basis for simulation model reduction, control system design, and forecastin

    Nonlinear Dynamic Surface Control of Chaos in Permanent Magnet Synchronous Motor Based on the Minimum Weights of RBF Neural Network

    Get PDF
    This paper is concerned with the problem of the nonlinear dynamic surface control (DSC) of chaos based on the minimum weights of RBF neural network for the permanent magnet synchronous motor system (PMSM) wherein the unknown parameters, disturbances, and chaos are presented. RBF neural network is used to approximate the nonlinearities and an adaptive law is employed to estimate unknown parameters. Then, a simple and effective controller is designed by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed controller is testified through simulation results

    Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems

    Get PDF
    Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant's differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method
    • …
    corecore