19 research outputs found

    Introduction to State Estimation of High-Rate System Dynamics

    Get PDF
    Engineering systems experiencing high-rate dynamic events, including airbags, debris detection, and active blast protection systems, could benefit from real-time observability for enhanced performance. However, the task of high-rate state estimation is challenging, in particular for real-time applications where the rate of the observer’s convergence needs to be in the microsecond range. This paper identifies the challenges of state estimation of high-rate systems and discusses the fundamental characteristics of high-rate systems. A survey of applications and methods for estimators that have the potential to produce accurate estimations for a complex system experiencing highly dynamic events is presented. It is argued that adaptive observers are important to this research. In particular, adaptive data-driven observers are advantageous due to their adaptability and lack of dependence on the system model

    Saturated Output-Feedback Hybrid Reinforcement Learning Controller for Submersible Vehicles Guaranteeing Output Constraints

    Get PDF
    In this brief, we propose a new neuro-fuzzy reinforcement learning-based control (NFRLC) structure that allows autonomous underwater vehicles (AUVs) to follow a desired trajectory in large-scale complex environments precisely. The accurate tracking control problem is solved by a unique online NFRLC method designed based on actor-critic (AC) structure. Integrating the NFRLC framework including an adaptive multilayer neural network (MNN) and interval type-2 fuzzy neural network (IT2FNN) with a high-gain observer (HGO), a robust smart observer-based system is set up to estimate the velocities of the AUVs, unknown dynamic parameters containing unmodeled dynamics, nonlinearities, uncertainties and external disturbances. By employing a saturation function in the design procedure and transforming the input limitations into input saturation nonlinearities, the risk of the actuator saturation is effectively reduced together with nonlinear input saturation compensation by the NFRLC strategy. A predefined funnel-shaped performance function is designed to attain certain prescribed output performance. Finally, stability study reveals that the entire closed-loop system signals are semi-globally uniformly ultimately bounded (SGUUB) and can provide prescribed convergence rate for the tracking errors so that the tracking errors approach to the origin evolving inside the funnel-shaped performance bound at the prescribed time

    Predictive Sliding Mode Control for Attitude Tracking of Hypersonic Vehicles Using Fuzzy Disturbance Observer

    Get PDF
    We propose a predictive sliding mode control (PSMC) scheme for attitude control of hypersonic vehicle (HV) with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO). First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC), which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC) is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme

    Adaptive Neural Control Based on High Order Integral Chained Differentiator for Morphing Aircraft

    Get PDF
    This paper presents an adaptive neural control for the longitudinal dynamics of a morphing aircraft. Based on the functional decomposition, it is reasonable to decompose the longitudinal dynamics into velocity and altitude subsystems. As for the velocity subsystem, the adaptive control is proposed via dynamic inversion method using neural network. To deal with input constraints, the additional compensation system is employed to help engine recover from input saturation rapidly. The highlight is that high order integral chained differentiator is used to estimate the newly defined variables and an adaptive neural controller is designed for the altitude subsystem where only one neural network is employed to approximate the lumped uncertain nonlinearity. The altitude subsystem controller is considerably simpler than the ones based on backstepping. It is proved using Lyapunov stability theory that the proposed control law can ensure that all the tracking error converges to an arbitrarily small neighborhood around zero. Numerical simulation study demonstrates the effectiveness of the proposed strategy, during the morphing process, in spite of some uncertain system nonlinearity

    Finite-time Sliding Mode and Super-twisting Control of Fighter Aircraft

    Full text link
    The development of two nonlinear robust higher-order flight control systems for roll-coupled maneuvers of fighter aircraft with uncertain parameters is discussed in this article. The objective is to independently control the output variables (roll angle, pitch angle and sideslip angle) using aileron, elevator and rudder control surfaces. For a nominal model of aircraft, first a finite time stabilizing (FTS) control law, based on the notion of geometric homogeneity, is designed. Then for robust control in the presence of parameter uncertainties, (i) a discontinuous sliding mode (DSM) control law and (ii) a super-twisting (STW) continuous control law is designed. It is shown that in the composite closed-loop system consisting of either (a) the FTS and DSM control laws or (b) the FTS and STW control systems, the output trajectory tracking error and its first-order derivative converge to the origin in finite time. Digital simulation results for a swept-wing fighter aircraft, including the two composite control systems, are obtained. These results show that each of the designed flight controllers accomplishes precise simultaneous large longitudinal and lateral maneuvers, despite uncertainties in the aerodynamic and inertia parameters, turbulence, and partial loss of control surface effectiveness

    Gain-Scheduled H-Infinity Control and Analysis of a Nonlinear Generic Hypersonic Vehicle

    Get PDF
    The concept of hypersonic flight has been around for many years. In recent years, emerging technologies and market forces have renewed latent interest in this challenging field. With many private and government institutions driving new innovations, these concepts are becoming reality. New research is needed to facilitate future innovation and deployment. The complex dynamic behaviors within the hypersonic flight envelope must be studied for designers to either mitigate or compensate for their effects on future vehicles. Control techniques must be adapted to suit the unstable and highly nonlinear dynamics of such systems. This work has two goals: to explore the dynamic characteristics of hypersonic flight and to control such a vehicle in the face of non-linearly changing dynamics. A nonlinear, 6 degree of freedom dynamic model of a Generic Hypersonic Vehicle is developed. The model integrates changing mass, moments of inertia, and center of gravity as a function of fuel burn. A bank of spline interpolation tables generates aerodynamic coefficients dependent on speed, angle of attack, and control surface deflections for the entire flight envelope. The nonlinear model of the full flight envelope is then reduced to a series of linear models to represent the aircraft trimmed under straight and level flight conditions over the range of Mach numbers, Mach 2 to 23. The changing Longitudinal and Lateral dynamics of the linearized system are analyzed as a function of Mach number using standard linear techniques to show the changing vehicle characteristics. A spline-based gain-scheduled, H-infinity controller is also designed for a subset of the linear systems. The controller stabilizes the system between Mach 4.9 and 7.1, with aircraft weight ranging from 160,000 to 230,000 pounds and from 68,000 to 92,000 feet altitude. The controller maintains system stability while commanded to change both Mach number and altitude within the gain-scheduled envelope. Additionally, the controller’s performance is assessed in the presence of low frequency disturbances

    Stator Flux Observer for Induction Motor Based on Tracking Differentiator

    Get PDF
    Voltage model is commonly used in direct torque control (DTC) for flux observing of asynchronous motor. In order to improve low-speed and dynamic performance of the voltage model, a modified low-pass filter (LPF) algorithm is proposed. Firstly, the tracking differentiator is brought in to modulate the measured stator current, which suppresses the measurement noise, and then amplitude and phase compensation is made towards the stator electromotive force (EMF), after which the stator flux is obtained through a low-pass filter. This method can eliminate the dynamic error of flux filtered by LPF and improve low-speed performance. Experimental results demonstrate effectiveness and improved dynamic performance of such method

    Bibliography of Lewis Research Center Technical Publications announced in 1991

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific engineering work performed and managed by the Lewis Research Center in 1991. All the publications were announced in the 1991 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses
    corecore