159 research outputs found

    Estimation of surface roughness on Ti-6Al-4V in high speed micro end milling by ANFIS model

    Get PDF
    379-389Titanium and its alloys are a few of the most suitable materials in medical applications due to their biocompatibility, anticorrosion and desirable mechanical properties compared to other materials like commercially pure Nb & Ta, Cr-Co alloys and stainless steels. High speed micro end milling is one of the favorable methods for accomplishing micro features on hard metals/alloys with better quality products delivering efficiently in shorter lead and production times. In this paper, experimental investigation of machining parameters influence on surface roughness in high speed micro end milling of Ti-6Al-4V using uncoated tungsten carbide tools under dry cutting conditions and prediction of surface roughness using adaptive neuro- fuzzy inference system (ANFIS) methodology has been presented. Using MATLAB tool box - ANFIS approach four membership functions - triangular, trapezoidal, gbell, gauss has been chosen during the training process in order to evaluate the prediction accuracy of surface roughness. The model’s predictions have been compared with experimental data for verifying the approach. From the comparison of four membership functions, the prediction accuracy of ANFIS has been reached 99.96% using general bell membership function. The most influential factor which influences the surface roughness has the feed rate followed by depth of cut

    An exTS based Neuro-Fuzzy algorithm for prognostics and tool condition monitoring.

    No full text
    International audienceThe growing interest in predictive maintenance makes industrials and researchers turning themselves to artificial intelligence methods for fulfilling the tasks of condition monitoring and prognostics. Within this frame, the general purpose of this paper is to investigate the capabilities of an Evolving eXtended Takagi Sugeno (exTS) based neuro-fuzzy algorithm to predict the tool condition in high-speed machining conditions. The performance of evolving Neuro-Fuzzy model is compared with an Adaptive Neuro-Fuzzy Inference System (ANFIS) and a Multiple Regression Model (MRM) in term of accuracy and reliability through a case study of tool condition monitoring. The reliability of exTS also investigated

    Cutting parameters optimisation in milling: expert machinist knowledge versus soft computing method

    Get PDF
    In traditional machining operations, cutting parameters are usually selected prior to machining according to machining handbooks and user’s experience. However, this method tends to be conservative and sub-optimal since part accuracy and non machining failures prevail over machining process efficiency. In this paper, a comparison between traditional cutting parameter optimisation by an expert machinist and an experimental optimisation procedure based on Soft Computing methods is conducted. The proposed methodology increases the machining performance in 6.1% and improves the understanding of the machining operation through the use of Adaptive Neuro-fuzzy Inference System

    Surface roughness modelling in super duplex stainless steel turning

    Get PDF
    Super duplex stainless steels are alloys that have good corrosion resistance properties and are intended for applications in corrosive environments. Due to their chemical composition and microstructure providing high strength and thermal resistance as well as high ductility, the machinability of these alloys is difficult, resulting in longer production cycles and higher costs in terms of more frequent replacement of tools. In this paper, the machinability of the super duplex EN 1.4410 was investigated under environmentally friendly machining process by using cold compressed air as a coolant. Experimental data were generated using the range of selected input parameters and correspondingly analysed surface roughness as output data. Predictive models were developed in order to make a comparison of their prediction performance. In addition, this paper also describes the methodology for optimised development of a particular predictive model. Finally, comparative analysis of the accuracy of predictive models was performed in order to define which model represents the best fit for the analysed experimental data, and also to show validity of the optimisation process

    Prediction of Surface Roughness When End Milling Ti6Al4V

    Get PDF
    Surface roughness is considered as the quality index of the machine parts. Many diverse techniques have been applied in modelling metal cutting processes. Previous studies have revealed that artificial intelligence techniques are novel soft computing methods which fit the solution of nonlinear and complex problems like metal cutting processes. The present study used adaptive neurofuzzy inference system for the purpose of predicting the surface roughness when end milling Ti6Al4V alloy with coated (PVD) and uncoated cutting tools under dry cutting conditions. Real experimental results have been used for training and testing of ANFIS models, and the best model was selected based on minimum root mean square error. A generalized bell-shaped function has been adopted as a membership function for the modelling process, and its numbers were changed from 2 to 5. The findings provided evidence of the capability of ANFIS in modelling surface roughness in end milling process and obtainment of good matching between experimental and predicted results

    Prilagodljivi neuro-fazi model za predviđanje tehnoloških parametara

    Get PDF
    The main goal of each technologist is the prediction of technological parameters by fulfilling the set design and technological demands. The work of the technologist is made easier by acquired knowledge and previous experience. A plan of input-output data was made by using the hybrid system of modelling ANFIS (Adaptive Neuro-Fuzzy Inference System) based on the results of seam tube production. This plan is the prerequisite for generating the system of fuzzy logic. The generated system can be used to estimate the output (speed of polishing) based on the given input (external tube diameter, oval shaping of the tube after the first phase of production, gradation of belts for grinding or polishing, condition of belts - time of usage, pressure of belts).The more precise predictions of technological time provided by the model supplement the previously defined manufacturing operations, replace the predictions based on the technologists\u27 experience and form the basis on which to plan production and control delivery times. The work of technologists is thus made easier and the production preparation technological time shorter.Procijeniti tehnološke parametre na način da se ispune postavljeni konstrukcijski i tehnološki zahtjevi cilj je i želja svakog tehnologa. Procjenu tehnologu mogu olakšati prikupljena znanja i ranije stečena iskustva. Na temelju sustavno prikupljenih podataka iz proizvodnje šavnih cijevi u radu je primjenom hibridnog sustava za modeliranje ANFIS (Adaptive Neuro-Fuzzy Inference System) oblikovan plan ulazno/izlaznih podataka. Taj je plan pretpostavka za generiranje sustava neizrazitog zaključivanja. Generirani sustav ima mogućnost procjene izlaza (brzine poliranja) na temelju danih ulaza (vanjski promjer cijevi, ovalnost cijevi nakon prve faze proizvodnje, gradacija remenja za brušenje ili poliranje, stanje remenja - vrijeme uporabe remenja, pritisak remenja). Točnije procjene tehnološkog vremena koje daje model upotpunjavaju prethodno definirane tehnološke operacije, zamjenjuje iskustvene procjene tehnologa i predstavljaju osnovu za planiranje proizvodnje i kontrolu rokova isporuke. Na ovaj se način olakšava rad tehnologa i skraćuje vrijeme tehnološke pripreme proizvodnje

    Application of ANFIS in predicting TiAlN coatings flank wear

    Get PDF
    In this paper, a new approach in predicting the flank wear of Titanium Aluminum Nitrite (TiAlN) coatings using Adaptive Network Based Fuzzy Inference System (ANFIS) is implemented. TiAlN coated cutting tool is widely used in machining due to its excellent resistance to wear. The TiAlN coatings were formed using Physical Vapor Deposition (PVD) magnetron sputtering process. The substrate sputtering power, bias voltage and temperature were selected as the input parameters and the flank wear as an output of the process. A statistical design of experiment called Response Surface Methodology (RSM) was used in collecting optimized data. The ANFIS model was trained using the limited experimental data. The triangular, trapezoidal, bell and Gaussian shapes of membership functions were used for inputs as well as output. The results of ANFIS model were validated with the testing data and compared with fuzzy rule-based and RSM flank wear models in terms of the root mean square error (RMSE), coefficient determination (R2) and model accuracy (A). The result indicated that the ANFIS model using three bell shapes membership function obtained better result compared to the fuzzy and RSM flank wear models. The result also indicated that the ANFIS model could predict the output response in high prediction accuracy even using limited training data

    New insights into the methods for predicting ground surface roughness in the age of digitalisation

    Get PDF
    Grinding is a multi-length scale material removal process that is widely employed to machine a wide variety of materials in almost every industrial sector. Surface roughness induced by a grinding operation can affect corrosion resistance, wear resistance, and contact stiffness of the ground components. Prediction of surface roughness is useful for describing the quality of ground surfaces, evaluate the efficiency of the grinding process and guide the feedback control of the grinding parameters in real-time to help reduce the cost of production. This paper reviews extant research and discusses advances in the realm of machining theory, experimental design and Artificial Intelligence related to ground surface roughness prediction. The advantages and disadvantages of various grinding methods, current challenges and evolving future trends considering Industry-4.0 ready new generation machine tools are also discussed
    corecore