182 research outputs found

    Symmetric complex-valued RBF receiver for multiple-antenna aided wireless systems

    No full text
    A nonlinear beamforming assisted detector is proposed for multiple-antenna-aided wireless systems employing complex-valued quadrature phase shift-keying modulation. By exploiting the inherent symmetry of the optimal Bayesian detection solution, a novel complex-valued symmetric radial basis function (SRBF)-network-based detector is developed, which is capable of approaching the optimal Bayesian performance using channel-impaired training data. In the uplink case, adaptive nonlinear beamforming can be efficiently implemented by estimating the system’s channel matrix based on the least squares channel estimate. Adaptive implementation of nonlinear beamforming in the downlink case by contrast is much more challenging, and we adopt a cluster-variationenhanced clustering algorithm to directly identify the SRBF center vectors required for realizing the optimal Bayesian detector. A simulation example is included to demonstrate the achievable performance improvement by the proposed adaptive nonlinear beamforming solution over the theoretical linear minimum bit error rate beamforming benchmark

    Comparison and Performance Analysis of DS-CDMA Systems by Genetic, Neural and GaNN (hybrid) Models

    Get PDF
    Direct Sequence-Code Division Multiple Access (DS-CDMA) technique is used in cellular systems where users in the cell are separated from each other with their unique spreading codes. DS-CDMA has been used extensively which suffers from multiple access interference (MAI) and inter symbol interference (ISI) due to multipath nature of channels in presence of additive white Gaussian noise (AWGN). Spreading codes play an important role in multiple access capacity of DS-CDMA system and Walsh sequences are used as spreading codes in DS-CDMA. DS CDMA receiver namely genetic algorithm neural network and GaNN (hybrid) based MUD receiver for DS-CDMA communication using Walsh sequences is designed. The performance of the same will be compared among themselves

    Multiuser detection employing recurrent neural networks for DS-CDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.Over the last decade, access to personal wireless communication networks has evolved to a point of necessity. Attached to the phenomenal growth of the telecommunications industry in recent times is an escalating demand for higher data rates and efficient spectrum utilization. This demand is fuelling the advancement of third generation (3G), as well as future, wireless networks. Current 3G technologies are adding a dimension of mobility to services that have become an integral part of modem everyday life. Wideband code division multiple access (WCDMA) is the standardized multiple access scheme for 3G Universal Mobile Telecommunication System (UMTS). As an air interface solution, CDMA has received considerable interest over the past two decades and a great deal of current research is concerned with improving the application of CDMA in 3G systems. A factoring component of CDMA is multiuser detection (MUD), which is aimed at enhancing system capacity and performance, by optimally demodulating multiple interfering signals that overlap in time and frequency. This is a major research problem in multipoint-to-point communications. Due to the complexity associated with optimal maximum likelihood detection, many different sub-optimal solutions have been proposed. This focus of this dissertation is the application of neural networks for MUD, in a direct sequence CDMA (DS-CDMA) system. Specifically, it explores how the Hopfield recurrent neural network (RNN) can be employed to give yet another suboptimal solution to the optimization problem of MUD. There is great scope for neural networks in fields encompassing communications. This is primarily attributed to their non-linearity, adaptivity and key function as data classifiers. In the context of optimum multiuser detection, neural networks have been successfully employed to solve similar combinatorial optimization problems. The concepts of CDMA and MUD are discussed. The use of a vector-valued transmission model for DS-CDMA is illustrated, and common linear sub-optimal MUD schemes, as well as the maximum likelihood criterion, are reviewed. The performance of these sub-optimal MUD schemes is demonstrated. The Hopfield neural network (HNN) for combinatorial optimization is discussed. Basic concepts and techniques related to the field of statistical mechanics are introduced and it is shown how they may be employed to analyze neural classification. Stochastic techniques are considered in the context of improving the performance of the HNN. A neural-based receiver, which employs a stochastic HNN and a simulated annealing technique, is proposed. Its performance is analyzed in a communication channel that is affected by additive white Gaussian noise (AWGN) by way of simulation. The performance of the proposed scheme is compared to that of the single-user matched filter, linear decorrelating and minimum mean-square error detectors, as well as the classical HNN and the stochastic Hopfield network (SHN) detectors. Concluding, the feasibility of neural networks (in this case the HNN) for MUD in a DS-CDMA system is explored by quantifying the relative performance of the proposed model using simulation results and in view of implementation issues

    Non-Linear Fuzzy Receivers for DS-CDMA Communication System

    Get PDF
    Direct sequence-code division multiple access (DS-CDMA) technique is used in cellular systems where users in the cell are separated from each other with their unique spreading codes. In recent times DS-CDMA has been used extensively. These systems suffers from multiple access interference (MAI) due to other users transmitting in the cell, channel inter symbol interference (ISI) due to multipath nature of channels in presence of additive white Gaussian noise (AWGN). This thesis presents an investigation on design of fuzzy based receivers for DS-CDMA system. Fuzzy based receiver has been proposed to work as chip level based (CLB) receivers and also multi user detection (MUD) receivers. It is seen that fuzzy receiver is capable of providing performance close to optimal radial basis function (RBF) receivers and provide considerable computational complexity reduction. Extensive simulation studies demonstrate the performance of the fuzzy receivers and the performance have been compared with RAKE receiver, matched filter (MF) receiver, minimum mean square error (MMSE) receiver and RBF receiver

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    Signal Processing and Learning for Next Generation Multiple Access in 6G

    Full text link
    Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed
    corecore