24 research outputs found

    A "metric" semi-Lagrangian Vlasov-Poisson solver

    Full text link
    We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position Q(P)Q(P) of any test particle PP, by expanding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time tt and position PP by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.Comment: 32 pages, 14 figures, accepted for publication in Journal of Plasma Physics, Special issue: The Vlasov equation, from space to laboratory plasma

    A mass-conserving sparse grid combination technique with biorthogonal hierarchical basis functions for kinetic simulations

    Full text link
    The exact numerical simulation of plasma turbulence is one of the assets and challenges in fusion research. For grid-based solvers, sufficiently fine resolutions are often unattainable due to the curse of dimensionality. The sparse grid combination technique provides the means to alleviate the curse of dimensionality for kinetic simulations. However, the hierarchical representation for the combination step with the state-of-the-art hat functions suffers from poor conservation properties and numerical instability. The present work introduces two new variants of hierarchical multiscale basis functions for use with the combination technique: the biorthogonal and full weighting bases. The new basis functions conserve the total mass and are shown to significantly increase accuracy for a finite-volume solution of constant advection. Further numerical experiments based on the combination technique applied to a semi-Lagrangian Vlasov--Poisson solver show a stabilizing effect of the new bases on the simulations

    Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting)

    Get PDF
    This small collaborative workshop brought together experts from the Sino-German project working in the field of advanced numerical methods for hyperbolic balance laws. These are particularly important for compressible fluid flows and related systems of equations. The investigated numerical methods were finite volume/finite difference, discontinuous Galerkin methods, and kinetic-type schemes. We have discussed challenging open mathematical research problems in this field, such as multidimensional shock waves, interfaces with different phases or efficient and problem suited adaptive algorithms. Consequently, our main objective was to discuss novel high-order accurate schemes that reliably approximate underlying physical models and preserve important physically relevant properties. Theoretical questions concerning the convergence of numerical methods and proper solution concepts were addressed as well

    A ‘metric’ semi-Lagrangian Vlasov–Poisson solver

    Get PDF

    Discontinuous Galerkin methods for Liouville’s equation of geometrical optics

    Get PDF

    Discontinuous Galerkin methods for Liouville’s equation of geometrical optics

    Get PDF

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Nonlinear Evolution Equations: Analysis and Numerics

    Get PDF
    The workshop was devoted to the analytical and numerical investigation of nonlinear evolution equations. The main aim was to stimulate a closer interaction between experts in analytical and numerical methods for areas such as wave and Schrödinger equations or the Navier–Stokes equations and fluid dynamics
    corecore