964 research outputs found

    An intelligent navigation system for an unmanned surface vehicle

    Get PDF
    Merged with duplicate record 10026.1/2768 on 27.03.2017 by CS (TIS)A multi-disciplinary research project has been carried out at the University of Plymouth to design and develop an Unmanned Surface Vehicle (USV) named ýpringer. The work presented herein relates to formulation of a robust, reliable, accurate and adaptable navigation system to enable opringei to undertake various environmental monitoring tasks. Synergistically, sensor mathematical modelling, fuzzy logic, Multi-Sensor Data Fusion (MSDF), Multi-Model Adaptive Estimation (MMAE), fault adaptive data acquisition and an user interface system are combined to enhance the robustness and fault tolerance of the onboard navigation system. This thesis not only provides a holistic framework but also a concourse of computational techniques in the design of a fault tolerant navigation system. One of the principle novelties of this research is the use of various fuzzy logic based MSDF algorithms to provide an adaptive heading angle under various fault situations for Springer. This algorithm adapts the process noise covariance matrix ( Q) and measurement noise covariance matrix (R) in order to address one of the disadvantages of Kalman filtering. This algorithm has been implemented in Spi-inger in real time and results demonstrate excellent robustness qualities. In addition to the fuzzy logic based MSDF, a unique MMAE algorithm has been proposed in order to provide an alternative approach to enhance the fault tolerance of the heading angles for Springer. To the author's knowledge, the work presented in this thesis suggests a novel way forward in the development of autonomous navigation system design and, therefore, it is considered that the work constitutes a contribution to knowledge in this area of study. Also, there are a number of ways in which the work presented in this thesis can be extended to many other challenging domains.DEVONPORT MANAGEMENT LTD, J&S MARINE LTD AND SOUTH WEST WATER PL

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    Real-time smoothing of car-following data through sensor-fusion techniques

    Get PDF
    AbstractObservation of vehicles kinematics is an important task for many applications in ITS (Intelligent Transportation Systems). It is at the base of both theoretical analyses and application developments, especially in case of positioning and tracing/tracking of vehicles, car-following analyses and models, navigation and other ATIS (Advanced Traveller Information Systems), ACC (Adaptive Cruise Control) systems, CAS and CWS (Collision Avoidance Systems and Collision Warning Systems) and other ADAS (Advanced Driving Assistance Systems). Modern technologies supply low-cost devices able to collect time series of kinematic and positioning data with medium to very high frequency. Even more data can be (almost continually) collected if vehicle-to-vehicle (V2V) communications come true. However, some of the ITS applications (as well as car-following models, on which many ADAS and ACC are based) require highly accurate measures or, at least, smooth profiles of collected data. Unfortunately, even relatively high-cost devices can collect biased data because of many technical reasons and often this bias could lead to unrealistic kinematics, incorrect absolute positioning and/or inconsistencies between vehicles (e.g. negative spacing). As a consequence, data need filtering in most of the ITS applications. To this aim proper algorithms are required and several sensors and sources of data possibly integrated in order to obtain the maximum quality at the minimal cost. This work addresses the previous issues by developing a specific Kalman smoothing approach. The approach is developed in order to deal with car-following conditions but is conceived to take into account also navigation issues. The performances are analysed with respect to real-world car-following data, voluntarily biased for evaluation purposes. Assessment is carried out with reference to different mixtures of sensors and different sensors accuracies

    Data Fusion for Vision-Based Robotic Platform Navigation

    Get PDF
    Data fusion has become an active research topic in recent years. Growing computational performance has allowed the use of redundant sensors to measure a single phenomenon. While Bayesian fusion approaches are common in general applications, the computer vision community has largely relegated this approach. Most object following algorithms have gone towards pure machine learning fusion techniques that tend to lack flexibility. Consequently, a more general data fusion scheme is needed. The motivation for this work is to propose methods that allow for the development of simple and cost effective, yet robust visual following robots capable of tracking a general object with limited restrictions on target characteristics. With that purpose in mind, in this work, a hierarchical adaptive Bayesian fusion approach is proposed, which outperforms individual trackers by using redundant measurements. The adaptive framework is achieved by relying in each measurement\u27s local statistics and a global softened majority voting. Several approaches for robots that can follow targets have been proposed in recent years. However, many require the use of several, expensive sensors and often the majority of the image processing and other calculations are performed independently. In the proposed approach, objects are detected by several state-of-the-art vision-based tracking algorithms, which are then used within a Bayesian framework to filter and fuse the measurements and generate the robot control commands. Target scale variations and, in one of the platforms, a time-of-flight (ToF) depth camera, are used to determine the relative distance between the target and the robotic platforms. The algorithms are executed in real-time (approximately 30fps). The proposed approaches were validated in a simulated application and several robotics platforms: one stationary pan-tilt system, one small unmanned air vehicle, and one ground robot with a Jetson TK1 embedded computer. Experiments were conducted with different target objects in order to validate the system in scenarios including occlusions and various illumination conditions as well as to show how the data fusion improves the overall robustness of the system

    Data Fusion of Laser Range Finder and Video Camera

    Get PDF
    For this project, a technique of fusing the data from sensors are developed in order to detect, track and classify in a static background environment. The proposed method is to utilize a single video camera and a laser range finder to determine the range of a generally specified targets or objects and classification of those particular targets. The module aims to acquire or detect objects or obstacles and provide the distance from the module to the target in real-time application using real live video. The proposed method to achieve the objective is using MATLAB to perform data fusion of the data collected from laser range finder and video camera. Background subtraction is used in this project to perform object detection

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Robust Multi-sensor Data Fusion for Practical Unmanned Surface Vehicles (USVs) Navigation

    Get PDF
    The development of practical Unmanned Surface Vehicles (USVs) are attracting increasing attention driven by their assorted military and commercial application potential. However, addressing the uncertainties presented in practical navigational sensor measurements of an USV in maritime environment remain the main challenge of the development. This research aims to develop a multi-sensor data fusion system to autonomously provide an USV reliable navigational information on its own positions and headings as well as to detect dynamic target ships in the surrounding environment in a holistic fashion. A multi-sensor data fusion algorithm based on Unscented Kalman Filter (UKF) has been developed to generate more accurate estimations of USV’s navigational data considering practical environmental disturbances. A novel covariance matching adaptive estimation algorithm has been proposed to deal with the issues caused by unknown and varying sensor noise in practice to improve system robustness. Certain measures have been designed to determine the system reliability numerically, to recover USV trajectory during short term sensor signal loss, and to autonomously detect and discard permanently malfunctioned sensors, and thereby enabling potential sensor faults tolerance. The performance of the algorithms have been assessed by carrying out theoretical simulations as well as using experimental data collected from a real-world USV projected collaborated with Plymouth University. To increase the degree of autonomy of USVs in perceiving surrounding environments, target detection and prediction algorithms using an Automatic Identification System (AIS) in conjunction with a marine radar have been proposed to provide full detections of multiple dynamic targets in a wider coverage range, remedying the narrow detection range and sensor uncertainties of the AIS. The detection algorithms have been validated in simulations using practical environments with water current effects. The performance of developed multi-senor data fusion system in providing reliable navigational data and perceiving surrounding environment for USV navigation have been comprehensively demonstrated
    • …
    corecore