1,747 research outputs found

    Combining inertial and visual sensing for human action recognition in tennis

    Get PDF
    In this paper, we present a framework for both the automatic extraction of the temporal location of tennis strokes within a match and the subsequent classification of these as being either a serve, forehand or backhand. We employ the use of low-cost visual sensing and low-cost inertial sensing to achieve these aims, whereby a single modality can be used or a fusion of both classification strategies can be adopted if both modalities are available within a given capture scenario. This flexibility allows the framework to be applicable to a variety of user scenarios and hardware infrastructures. Our proposed approach is quantitatively evaluated using data captured from elite tennis players. Results point to the extremely accurate performance of the proposed approach irrespective of input modality configuration

    Magnetic and radar sensing for multimodal remote health monitoring

    Get PDF
    With the increased life expectancy and rise in health conditions related to aging, there is a need for new technologies that can routinely monitor vulnerable people, identify their daily pattern of activities and any anomaly or critical events such as falls. This paper aims to evaluate magnetic and radar sensors as suitable technologies for remote health monitoring purpose, both individually and fusing their information. After experiments and collecting data from 20 volunteers, numerical features has been extracted in both time and frequency domains. In order to analyse and verify the validation of fusion method for different classifiers, a Support Vector Machine with a quadratic kernel, and an Artificial Neural Network with one and multiple hidden layers have been implemented. Furthermore, for both classifiers, feature selection has been performed to obtain salient features. Using this technique along with fusion, both classifiers can detect 10 different activities with an accuracy rate of approximately 96%. In cases where the user is unknown to the classifier, an accuracy of approximately 92% is maintained

    Multi-sensor fusion based on multiple classifier systems for human activity identification

    Get PDF
    Multimodal sensors in healthcare applications have been increasingly researched because it facilitates automatic and comprehensive monitoring of human behaviors, high-intensity sports management, energy expenditure estimation, and postural detection. Recent studies have shown the importance of multi-sensor fusion to achieve robustness, high-performance generalization, provide diversity and tackle challenging issue that maybe difficult with single sensor values. The aim of this study is to propose an innovative multi-sensor fusion framework to improve human activity detection performances and reduce misrecognition rate. The study proposes a multi-view ensemble algorithm to integrate predicted values of different motion sensors. To this end, computationally efficient classification algorithms such as decision tree, logistic regression and k-Nearest Neighbors were used to implement diverse, flexible and dynamic human activity detection systems. To provide compact feature vector representation, we studied hybrid bio-inspired evolutionary search algorithm and correlation-based feature selection method and evaluate their impact on extracted feature vectors from individual sensor modality. Furthermore, we utilized Synthetic Over-sampling minority Techniques (SMOTE) algorithm to reduce the impact of class imbalance and improve performance results. With the above methods, this paper provides unified framework to resolve major challenges in human activity identification. The performance results obtained using two publicly available datasets showed significant improvement over baseline methods in the detection of specific activity details and reduced error rate. The performance results of our evaluation showed 3% to 24% improvement in accuracy, recall, precision, F-measure and detection ability (AUC) compared to single sensors and feature-level fusion. The benefit of the proposed multi-sensor fusion is the ability to utilize distinct feature characteristics of individual sensor and multiple classifier systems to improve recognition accuracy. In addition, the study suggests a promising potential of hybrid feature selection approach, diversity-based multiple classifier systems to improve mobile and wearable sensor-based human activity detection and health monitoring system. - 2019, The Author(s).This research is supported by University of Malaya BKP Special Grant no vote BKS006-2018.Scopu

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Multi-sensor human action recognition with particular application to tennis event-based indexing

    Get PDF
    The ability to automatically classify human actions and activities using vi- sual sensors or by analysing body worn sensor data has been an active re- search area for many years. Only recently with advancements in both fields and the ubiquitous nature of low cost sensors in our everyday lives has auto- matic human action recognition become a reality. While traditional sports coaching systems rely on manual indexing of events from a single modality, such as visual or inertial sensors, this thesis investigates the possibility of cap- turing and automatically indexing events from multimodal sensor streams. In this work, we detail a novel approach to infer human actions by fusing multimodal sensors to improve recognition accuracy. State of the art visual action recognition approaches are also investigated. Firstly we apply these action recognition detectors to basic human actions in a non-sporting con- text. We then perform action recognition to infer tennis events in a tennis court instrumented with cameras and inertial sensing infrastructure. The system proposed in this thesis can use either visual or inertial sensors to au- tomatically recognise the main tennis events during play. A complete event retrieval system is also presented to allow coaches to build advanced queries, which existing sports coaching solutions cannot facilitate, without an inordi- nate amount of manual indexing. The event retrieval interface is evaluated against a leading commercial sports coaching tool in terms of both usability and efficiency

    A Novel Two Stream Decision Level Fusion of Vision and Inertial Sensors Data for Automatic Multimodal Human Activity Recognition System

    Full text link
    This paper presents a novel multimodal human activity recognition system. It uses a two-stream decision level fusion of vision and inertial sensors. In the first stream, raw RGB frames are passed to a part affinity field-based pose estimation network to detect the keypoints of the user. These keypoints are then pre-processed and inputted in a sliding window fashion to a specially designed convolutional neural network for the spatial feature extraction followed by regularized LSTMs to calculate the temporal features. The outputs of LSTM networks are then inputted to fully connected layers for classification. In the second stream, data obtained from inertial sensors are pre-processed and inputted to regularized LSTMs for the feature extraction followed by fully connected layers for the classification. At this stage, the SoftMax scores of two streams are then fused using the decision level fusion which gives the final prediction. Extensive experiments are conducted to evaluate the performance. Four multimodal standard benchmark datasets (UP-Fall detection, UTD-MHAD, Berkeley-MHAD, and C-MHAD) are used for experimentations. The accuracies obtained by the proposed system are 96.9 %, 97.6 %, 98.7 %, and 95.9 % respectively on the UP-Fall Detection, UTDMHAD, Berkeley-MHAD, and C-MHAD datasets. These results are far superior than the current state-of-the-art methods

    Inertial data-based AI approaches for ADL and fall recognition

    Get PDF
    The recognition of Activities of Daily Living (ADL) has been a widely debated topic, with applications in a vast range of fields. ADL recognition can be accomplished by processing data from wearable sensors, specially located at the lower trunk, which appears to be a suitable option in uncontrolled environments. Several authors have addressed ADL recognition using Artificial Intelligence (AI)-based algorithms, obtaining encouraging results. However, the number of ADL recognized by these algorithms is still limited, rarely focusing on transitional activities, and without addressing falls. Furthermore, the small amount of data used and the lack of information regarding validation processes are other drawbacks found in the literature. To overcome these drawbacks, a total of nine public and private datasets were merged in order to gather a large amount of data to improve the robustness of several ADL recognition algorithms. Furthermore, an AI-based framework was developed in this manuscript to perform a comparative analysis of several ADL Machine Learning (ML)-based classifiers. Feature selection algorithms were used to extract only the relevant features from the dataset’s lower trunk inertial data. For the recognition of 20 different ADL and falls, results have shown that the best performance was obtained with the K-NN classifier with the first 85 features ranked by Relief-F (98.22% accuracy). However, Ensemble Learning classifier with the first 65 features ranked by Principal Component Analysis (PCA) presented 96.53% overall accuracy while maintaining a lower classification time per window (0.039 ms), showing a higher potential for its usage in real-time scenarios in the future. Deep Learning algorithms were also tested. Despite its outcomes not being as good as in the prior procedure, their potential was also demonstrated (overall accuracy of 92.55% for Bidirectional Long Short-Term Memory (LSTM) Neural Network), indicating that they could be a valid option in the future.FCT—Fundação para a Ciência e Tecnologia—national funds, under the scholarship references UMINHO-VC/BII/2021/03 and PD/BD/141515/2018, and the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/202

    Bi-LSTM network for multimodal continuous human activity recognition and fall detection

    Get PDF
    This paper presents a framework based on multi-layer bi-LSTM network (bidirectional Long Short-Term Memory) for multimodal sensor fusion to sense and classify daily activities’ patterns and high-risk events such as falls. The data collected in this work are continuous activity streams from FMCW radar and three wearable inertial sensors on the wrist, waist, and ankle. Each activity has a variable duration in the data stream so that the transitions between activities can happen at random times within the stream, without resorting to conventional fixed-duration snapshots. The proposed bi-LSTM implements soft feature fusion between wearable sensors and radar data, as well as two robust hard-fusion methods using the confusion matrices of both sensors. A novel hybrid fusion scheme is then proposed to combine soft and hard fusion to push the classification performances to approximately 96% accuracy in identifying continuous activities and fall events. These fusion schemes implemented with the proposed bi-LSTM network are compared with conventional sliding window approach, and all are validated with realistic “leaving one participant out” (L1PO) method (i.e. testing subjects unknown to the classifier). The developed hybrid-fusion approach is capable of stabilizing the classification performance among different participants in terms of reducing accuracy variance of up to 18.1% and increasing minimum, worst-case accuracy up to 16.2%

    A multi-sensory approach for remote health monitoring of older people

    Get PDF
    Growing life expectancy and increasing incidence of multiple chronic health conditions are significant societal challenges. Different technologies have been proposed to address these issues, detect critical events, such as stroke or falls, and monitor automatically human activities for health condition inference and anomaly detection. This paper aims to investigate two types of sensing technologies proposed for assisted living: wearable and radar sensors. First, different feature selection methods are validated and compared in terms of accuracy and computational loads. Then, information fusion is applied to enhance activity classification accuracy combining the two sensors. Improvements in classification accuracy of approximately 12% using feature level fusion are achieved with both support vector machine s (SVMs) and k-nearest neighbor (KNN) classifiers. Decision-level fusion schemes are also investigated, yielding classification accuracy in the order of 97%-98%
    corecore