123 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks

    Particle Swarm Optimization-Based Multispectral Image Fusion for Minimizing Spectral Loss

    Get PDF
    A novel multispectral image fusion technique is proposed which minimizes the spectral loss of fused product using a proper objective function. It is found that the Relative Average Square Error (RASE) is a good choice to be considered as the objective function. A linear combination of multispectral bands is calculated in which the weights are optimized using particle swarm optimization algorithm. Several experimental studies have been conducted on three public domain datasets to show the effectiveness of the proposed approach in comparison with state-of-the-art methods. The objective and visual assessments of the proposed method support the claims provided in this paper

    Small-Object Detection in Remote Sensing Images with End-to-End Edge-Enhanced GAN and Object Detector Network

    Full text link
    The detection performance of small objects in remote sensing images is not satisfactory compared to large objects, especially in low-resolution and noisy images. A generative adversarial network (GAN)-based model called enhanced super-resolution GAN (ESRGAN) shows remarkable image enhancement performance, but reconstructed images miss high-frequency edge information. Therefore, object detection performance degrades for small objects on recovered noisy and low-resolution remote sensing images. Inspired by the success of edge enhanced GAN (EEGAN) and ESRGAN, we apply a new edge-enhanced super-resolution GAN (EESRGAN) to improve the image quality of remote sensing images and use different detector networks in an end-to-end manner where detector loss is backpropagated into the EESRGAN to improve the detection performance. We propose an architecture with three components: ESRGAN, Edge Enhancement Network (EEN), and Detection network. We use residual-in-residual dense blocks (RRDB) for both the ESRGAN and EEN, and for the detector network, we use the faster region-based convolutional network (FRCNN) (two-stage detector) and single-shot multi-box detector (SSD) (one stage detector). Extensive experiments on a public (car overhead with context) and a self-assembled (oil and gas storage tank) satellite dataset show superior performance of our method compared to the standalone state-of-the-art object detectors.Comment: This paper contains 27 pages and accepted for publication in MDPI remote sensing journal. GitHub Repository: https://github.com/Jakaria08/EESRGAN (Implementation

    Particle Swarm Optimization-Based Multispectral Image Fusion for Minimizing Spectral Loss

    Get PDF
    A novel multispectral image fusion technique is proposed which minimizes the spectral loss of fused product using a proper objective function. It is found that the Relative Average Square Error (RASE) is a good choice to be considered as the objective function. A linear combination of multispectral bands is calculated in which the weights are optimized using particle swarm optimization algorithm. Several experimental studies have been conducted on three public domain datasets to show the effectiveness of the proposed approach in comparison with state-of-the-art methods. The objective and visual assessments of the proposed method support the claims provided in this paper

    Towards Streamlined Single-Image Super-Resolution: Demonstration with 10 m Sentinel-2 Colour and 10-60 m Multi-Spectral VNIR and SWIR Bands

    Get PDF
    Higher spatial resolution imaging data are considered desirable in many Earth observation applications. In this work, we propose and demonstrate the TARSGAN (learning Terrestrial image deblurring using Adaptive weighted dense Residual Super-resolution Generative Adversarial Network) system for Super-resolution Restoration (SRR) of 10 m/pixel Sentinel-2 “true” colour images as well as all the other multispectral bands. In parallel, the ELF (automated image Edge detection and measurements of edge spread function, Line spread function, and Full width at half maximum) system is proposed to achieve automated and precise assessments of the effective resolutions of the input and SRR images. Subsequent ELF measurements of the TARSGAN SRR results suggest an averaged effective resolution enhancement factor of about 2.91 times (equivalent to ~3.44 m/pixel for the 10 m/pixel bands) given a nominal SRR upscaling factor of 4 times. Several examples are provided for different types of scenes from urban landscapes to agricultural scenes and sea-ice floes
    corecore