1,067 research outputs found

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    Best sum-throughput evaluation of cooperative downlink transmission nonorthogonal multiple access system

    Get PDF
    In cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) downlink situations, the current research investigates the total throughput of users in center and edge of cell. We focus on creating ways to solve these problems because the fair transmission rate of users located in cell edge and outage performance are significant hurdles at NOMA schemes. To enhance the functionality of cell-edge users, we examine a two-user NOMA scheme whereby the cell-center user functions as a SWIPT relay using power splitting (PS) with a multiple-input single-output. We calculated the probability of an outage for both center and edge cell users, using closed-form approximation formulas and evaluate the system efficacy. The usability of cell edge users is maximized by downlink transmission NOMA (CDT-NOMA) employing a SWIPT relay that employs PS. The suggested approach calculates the ideal value of the PS coefficient to optimize the sum throughput. Compared to the noncooperative and single-input single-output NOMA systems, the best SWIPT-NOMA system provides the cell-edge user with a significant throughput gain. Applying SWIPT-based relaying transmission has no impact on the framework’s overall throughput

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    The Role Of RNA Binding Proteins And CRISPR/CAS9 As A Gene Editing Tool In Drosophila Nociception

    Get PDF
    Drosophila melanogaster is a powerful model organism to study nociception. The compact and easily manipulated genome provides an opportunity to determine the function of molecules involved in basal and sensitized nociception in both larval and adult animals. Using the GAL4/UAS system, genetic knockdown with RNAi and knockout with CRISPR/Cas9 are possible to pinpoint specific molecular mechanisms and cellular processes within nociceptors that are implicated in nociception. The three main objectives of this work were to: elucidate the impact that three RNA binding proteins have on basal nociception, establish a transgenic fly line capable of inducing Cas9-mediated knockout of specific genes, and to validate a protocol based on a previously published assay to measure thermal nociception in adults. The expression of SC35, an exon-inclusion splicing factor; LaRP4B, a translation stimulator; and eIF2a, a translation regulator, were each required for thermal nociception. Cas9 expression led to sgRNA-independent effects such as severe defects in dendrite morphology. The adult thermal nociception assay was validated and similar results to the original publication were reproduced. Importantly, the findings made with the Drosophila model can be directly applicable to chronic pain in humans due to DNA sequence homology and the conserved function of proteins across species

    RF Wireless Power and Data Transfer : Experiment-driven Analysis and Waveform Design

    Get PDF
    The brisk deployment of the fifth generation (5G) mobile technology across the globe has accelerated the adoption of Internet of Things (IoT) networks. While 5G provides the necessary bandwidth and latency to connect the trillions of IoT sensors to the internet, the challenge of powering such a multitude of sensors with a replenishable energy source remains. Far-field radio frequency (RF) wireless power transfer (WPT) is a promising technology to address this issue. Conventionally, the RF WPT concepts have been deemed inadequate to deliver wireless power due to the undeniably huge over-the-air propagation losses. Nonetheless, the radical decline in the energy requirement of simple sensing and computing devices over the last few decades has rekindled the interest in RF WPT as a feasible solution for wireless power delivery to IoT sensors. The primary goal in any RF WPT system is to maximize the harvested direct current (DC) power from the minuscule incident RF power. As a result, optimizing the receiver power efficiency is pivotal for an RF WPT system. On similar lines, it is essential to minimize the power losses at the transmitter in order to achieve a sustainable and economically viable RF WPT system. In this regard, this thesis explores the system-level study of an RF WPT system using a digital radio transmitter for applications where alternative analog transmit circuits are impractical. A prototype test-bed comprising low-cost software-defined radio (SDR) transmitter and an off-the-shelf RF energy-harvesting (EH) receiver is developed to experimentally analyze the impact of clipping and nonlinear amplification at the digital radio transmitter on digital baseband waveform. The use of an SDR allows leveraging the test-bed for the research on RF simultaneous wireless information and power transfer (SWIPT); the true potential of this technology can be realized by utilizing the RF spectrum to transport data and power together. The experimental results indicate that a digital radio severely distorts high peak-to-average power ratio (PAPR) signals, thereby reducing their average output power and rendering them futile for RF WPT. On similar lines, another test-bed is developed to assess the impact of different waveforms, input impedance mismatch, incident RF power, and load on the receiver power efficiency of an RF WPT system. The experimental results provide the foundation and notion to develop a novel mathematical model for an RF EH receiver. The parametric model relates the harvested DC power to the power distribution of the envelope signal of the incident waveform, which is characterized by the amplitude, phase and frequency of the baseband waveform. The novel receiver model is independent of the receiver circuit’s matching network, rectifier configuration, number of diodes, load as well as input frequency. The efficacy of the model in accurately predicting the output DC power for any given power-level distribution is verified experimentally. Since the novel receiver model associates the output DC power to the parameters of the incident waveform, it is further leveraged to design optimal transmit wave-forms for RF WPT and SWIPT. The optimization problem reveals that a constant envelope signal with varying duty cycle is optimal for maximizing the harvested DC power. Consequently, a pulsed RF waveform is optimal for RF WPT, whereas a continuous phase modulated pulsed RF signal is suitable for RF SWIPT. The superior WPT performance of pulsed RF waveforms over multisine signals is demonstrated experimentally. Similarly, the pulsed phase-shift keying (PSK) signals exhibit superior receiver power efficiency than other communication signals. Nonetheless, varying the duty-cycle of pulsed PSK waveform leads to an efficiency—throughput trade-off in RF SWIPT. Finally, the SDR test-bed is used to evaluate the overall end-to-end power efficiency of different digital baseband waveforms through wireless measurements. The results indicate a 4-PSK modulated signal to be suitable for RF WPT considering the overall power efficiency of the system. The corresponding transmitter, channel and receiver power efficiencies are evaluated as well. The results demonstrate the transmitter power efficiency to be lower than the receiver power efficiency

    Multi-objective resource optimization in space-aerial-ground-sea integrated networks

    Get PDF
    Space-air-ground-sea integrated (SAGSI) networks are envisioned to connect satellite, aerial, ground, and sea networks to provide connectivity everywhere and all the time in sixth-generation (6G) networks. However, the success of SAGSI networks is constrained by several challenges including resource optimization when the users have diverse requirements and applications. We present a comprehensive review of SAGSI networks from a resource optimization perspective. We discuss use case scenarios and possible applications of SAGSI networks. The resource optimization discussion considers the challenges associated with SAGSI networks. In our review, we categorized resource optimization techniques based on throughput and capacity maximization, delay minimization, energy consumption, task offloading, task scheduling, resource allocation or utilization, network operation cost, outage probability, and the average age of information, joint optimization (data rate difference, storage or caching, CPU cycle frequency), the overall performance of network and performance degradation, software-defined networking, and intelligent surveillance and relay communication. We then formulate a mathematical framework for maximizing energy efficiency, resource utilization, and user association. We optimize user association while satisfying the constraints of transmit power, data rate, and user association with priority. The binary decision variable is used to associate users with system resources. Since the decision variable is binary and constraints are linear, the formulated problem is a binary linear programming problem. Based on our formulated framework, we simulate and analyze the performance of three different algorithms (branch and bound algorithm, interior point method, and barrier simplex algorithm) and compare the results. Simulation results show that the branch and bound algorithm shows the best results, so this is our benchmark algorithm. The complexity of branch and bound increases exponentially as the number of users and stations increases in the SAGSI network. We got comparable results for the interior point method and barrier simplex algorithm to the benchmark algorithm with low complexity. Finally, we discuss future research directions and challenges of resource optimization in SAGSI networks

    A survey on reconfigurable intelligent surfaces: wireless communication perspective

    Get PDF
    Using reconfigurable intelligent surfaces (RISs) to improve the coverage and the data rate of future wireless networks is a viable option. These surfaces are constituted of a significant number of passive and nearly passive components that interact with incident signals in a smart way, such as by reflecting them, to increase the wireless system's performance as a result of which the notion of a smart radio environment comes to fruition. In this survey, a study review of RIS-assisted wireless communication is supplied starting with the principles of RIS which include the hardware architecture, the control mechanisms, and the discussions of previously held views about the channel model and pathloss; then the performance analysis considering different performance parameters, analytical approaches and metrics are presented to describe the RIS-assisted wireless network performance improvements. Despite its enormous promise, RIS confronts new hurdles in integrating into wireless networks efficiently due to its passive nature. Consequently, the channel estimation for, both full and nearly passive RIS and the RIS deployments are compared under various wireless communication models and for single and multi-users. Lastly, the challenges and potential future study areas for the RIS aided wireless communication systems are proposed

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    corecore