756 research outputs found

    Adaptive Mode Selection and Power Allocation in Bidirectional Buffer-aided Relay Networks

    Full text link
    In this paper, we consider the problem of sum rate maximization in a bidirectional relay network with fading. Hereby, user 1 and user 2 communicate with each other only through a relay, i.e., a direct link between user 1 and user 2 is not present. In this network, there exist six possible transmission modes: four point-to-point modes (user 1-to-relay, user 2-to-relay, relay-to-user 1, relay-to-user 2), a multiple access mode (both users to the relay), and a broadcast mode (the relay to both users). Most existing protocols assume a fixed schedule of using a subset of the aforementioned transmission modes, as a result, the sum rate is limited by the capacity of the weakest link associated with the relay in each time slot. Motivated by this limitation, we develop a protocol which is not restricted to adhere to a predefined schedule for using the transmission modes. Therefore, all transmission modes of the bidirectional relay network can be used adaptively based on the instantaneous channel state information (CSI) of the involved links. To this end, the relay has to be equipped with two buffers for the storage of the information received from users 1 and 2, respectively. For the considered network, given a total average power budget for all nodes, we jointly optimize the transmission mode selection and power allocation based on the instantaneous CSI in each time slot for sum rate maximization. Simulation results show that the proposed protocol outperforms existing protocols for all signal-to-noise ratios (SNRs). Specifically, we obtain a considerable gain at low SNRs due to the adaptive power allocation and at high SNRs due to the adaptive mode selection.Comment: arXiv admin note: substantial text overlap with arXiv:1303.373

    Novel Mode Selection Schemes for Buffer-Aided Cooperative NOMA System

    Get PDF
    This paper investigates a cooperative non-orthogonal multiple access (C-NOMA) system, where the NOMA and buffer-aided cooperative transmission modes between the users are integrated. Two novel mode selection schemes are proposed, which adaptively select the NOMA and cooperative modes according to different buffer states and communication environments. These two proposed schemes are termed single-core state (SCS) and dual-core state (DCS) schemes since they correspond to single and dual-core buffer states. These core states are carefully chosen, which ensure not only a sufficient amount of available transmission modes or links but also a small number of stored packets at each buffer. The closed-form expressions of the outage probabilities and average delays of the proposed schemes are derived and verified by simulation results. Asymptotic performance analysis is also performed, revealing that both proposed schemes achieve the full diversity within the minimum required buffer size of two. Analytical and simulation results show that the proposed SCS and DCS schemes ensure favourable outage performance and the lowest delay, respectively

    Full-duplex wireless communications: challenges, solutions and future research directions

    No full text
    The family of conventional half-duplex (HD) wireless systems relied on transmitting and receiving in different time-slots or frequency sub-bands. Hence the wireless research community aspires to conceive full-duplex (FD) operation for supporting concurrent transmission and reception in a single time/frequency channel, which would improve the attainable spectral efficiency by a factor of two. The main challenge encountered in implementing an FD wireless device is the large power difference between the self-interference (SI) imposed by the device’s own transmissions and the signal of interest received from a remote source. In this survey, we present a comprehensive list of the potential FD techniques and highlight their pros and cons. We classify the SI cancellation techniques into three categories, namely passive suppression, analog cancellation and digital cancellation, with the advantages and disadvantages of each technique compared. Specifically, we analyse the main impairments (e.g. phase noise, power amplifier nonlinearity as well as in-phase and quadrature-phase (I/Q) imbalance, etc.) that degrading the SI cancellation. We then discuss the FD based Media Access Control (MAC)-layer protocol design for the sake of addressing some of the critical issues, such as the problem of hidden terminals, the resultant end-to-end delay and the high packet loss ratio (PLR) due to network congestion. After elaborating on a variety of physical/MAC-layer techniques, we discuss potential solutions conceived for meeting the challenges imposed by the aforementioned techniques. Furthermore, we also discuss a range of critical issues related to the implementation, performance enhancement and optimization of FD systems, including important topics such as hybrid FD/HD scheme, optimal relay selection and optimal power allocation, etc. Finally, a variety of new directions and open problems associated with FD technology are pointed out. Our hope is that this treatise will stimulate future research efforts in the emerging field of FD communication
    • …
    corecore