570 research outputs found

    Determining the optimal decision delay parameter for a linear equalizer

    No full text
    The achievable bit error rate of a linear equalizer is crucially determined by the choice of a decision delay parameter. This brief paper presents a simple method for the efficient determination of the optimal decision delay parameter that results in the best bit error rate performance for a linear equaliz

    High-Speed Communications Over Polymer Optical Fibers for In-Building Cabling and Home Networking

    Get PDF
    This paper focuses on high-speed cabling using polymer optical fibers (POF) in home networking. In particular, we report about the results obtained in the POF-ALL European Project, which is relevant to the Sixth Framework Program, and after two years of the European Project POF-PLUS, which is relevant to the Seventh Framework Program, focusing on their research activities about the use of poly-metyl-metha-acrilate step-index optical fibers for home applications. In particular, for that which concerns POF-ALL, we will describe eight-level pulse amplitude modulation (8-PAM) and orthogonal frequency-division multiplexing (OFDM) approaches for 100-Mb/s transmission over a target distance of 300 m, while for that which concerns POF-PLUS, we will describe a fully digital and a mixed analog-digital solution, both based on intensity modulation direct detection, for transmitting 1 Gb/s over a target distance of 50 m. The ultimate experimental results from the POF-ALL project will be given, while for POF-PLUS, which is still ongoing, we will only show our most recent preliminary results

    Low-complexity iterative receiver algorithms for multiple-input multiple-output underwater wireless communications

    Get PDF
    This dissertation proposes three low-complexity iterative receiver algorithms for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First is a bidirectional soft-decision feedback Turbo equalizer (Bi-SDFE) which harvests the time-reverse diversity in severe multipath MIMO channels. The Bi-SDFE outperforms the original soft-decision feedback Turbo equalizer (SDFE) while keeping its total computational complexity similar to that of the SDFE. Second, this dissertation proposes an efficient direct adaptation Turbo equalizer for MIMO UWA communications. Benefiting from the usage of soft-decision reference symbols for parameter adaptation as well as the iterative processing inside the adaptive equalizer, the proposed algorithm is efficient in four aspects: robust performance in tough channels, high spectral efficiency with short training overhead, time efficient with fast convergence and low complexity in hardware implementation. Third, a frequency-domain soft-decision block iterative equalizer combined with iterative channel estimation is proposed for the uncoded single carrier MIMO systems with high data efficiency. All the three new algorithms are evaluated by data recorded in real world ocean experiment or pool experiment. Finally, this dissertation also compares several Turbo equalizers in single-input single-output (SISO) UWA channels. Experimental results show that the channel estimation based Turbo equalizers are robust in SISO underwater transmission under harsh channel conditions --Abstract, page iv

    Multirate Frequency Transformations: Wideband AM-FM Demodulation with Applications to Signal Processing and Communications

    Get PDF
    The AM-FM (amplitude & frequency modulation) signal model finds numerous applications in image processing, communications, and speech processing. The traditional approaches towards demodulation of signals in this category are the analytic signal approach, frequency tracking, or the energy operator approach. These approaches however, assume that the amplitude and frequency components are slowly time-varying, e.g., narrowband and incur significant demodulation error in the wideband scenarios. In this thesis, we extend a two-stage approach towards wideband AM-FM demodulation that combines multirate frequency transformations (MFT) enacted through a combination of multirate systems with traditional demodulation techniques, e.g., the Teager-Kasiser energy operator demodulation (ESA) approach to large wideband to narrowband conversion factors. The MFT module comprises of multirate interpolation and heterodyning and converts the wideband AM-FM signal into a narrowband signal, while the demodulation module such as ESA demodulates the narrowband signal into constituent amplitude and frequency components that are then transformed back to yield estimates for the wideband signal. This MFT-ESA approach is then applied to the various problems of: (a) wideband image demodulation and fingerprint demodulation, where multidimensional energy separation is employed, (b) wideband first-formant demodulation in vowels, and (c) wideband CPM demodulation with partial response signaling, to demonstrate its validity in both monocomponent and multicomponent scenarios as an effective multicomponent AM-FM signal demodulation and analysis technique for image processing, speech processing, and communications based applications

    Analysis of high capacity short reach optical links

    Get PDF
    Over the last few years, the global Internet traffic has grown exponentially due to the advent of the social networks, high definition streaming, online gaming, high performance computing and cloud services. The network is saturating, facing a challenge to provide enough capacity to such ever-demanding bandwidth expensive applications. Fiber optic communications is the only technology capable of dealing such high demands due to its advantages over the traditional electrical transmission technology. The short haul transmissions currently rely on direct detection due to low cost, low power and low complexity as compared to the coherent detection schemes. In order to increase the bit rate, several advance modulation formats are under investigation for short reach transmissions. Such links mostly use intensity modulation direct detection (IMDD) schemes providing a simple system when compared with the coherent receivers. In this thesis the performance of Multilevel Pulse Amplitude Modulation (MPAM) is studied using IMDD, providing good spectral efficiency as well as able to deal with the limited electronic devices bandwidth. MPAM can address the typical optical channel without the need to go with more complex and higher power modulation schemes. It provides a trade off between sensitivity and the complexity. So a simple communication system using MPAM is implemented using an external modulated laser transmitted over a distance of 2 km. In order to reduce the cost, single laser and single receiver technique is being adopted. The performance of the MPAM system in a bandwidth limited scenarios is studied with a possibility to use equalization techniques to improve the sensitivity. The utility of Forward Error Correction codes is also studied to improve the performance without increasing the latency. By increasing the number of bits per symbol, the system becomes more sensitive to the impairments. Moreover, the components and the connectors in the transmission system also introduces multipath interference (MPI) that is a key limitation to the use of advance modulation formats. Hence a detailed study is carried out to investigate the MPI effects. At the end, a novel idea based on reflective Mach-Zehnder modulator (MZM) is presented that reuses the modulated wavelength eliminating the need for a laser. As a consequent, the cost and power consumption specifically targeted for the optical interconnect environment is reduced. In a nutshell, the thesis provides an overview of the direct detection system targeted to the short optical links. It includes the studies related to the optical transmission systems and provides an insight of the available advance modulation formats and the detection schemes. Finally, the simulations and laboratory results are provided showing that adoption of MPAM is a viable solution that should be employed in high capacity short reach optical links

    Robust multilevel coherent optical systems with linear processing at the receiver

    Get PDF
    This paper investigates optical coherent systems based on polarization multiplexing and high-order modulations such as phase-shift keying (PSK) signals and quadrature amplitude modulations (QAM). It is shown that a simple linear receiver processing is sufficient to perfectly demultiplex the two transmitted streams and to perfectly compensate for group velocity dispersion (GVD) and polarization mode dispersion (PMD). In addition, in the presence of a strong phase noise of the lasers at the transmitter and receiver, a symbol-by-symbol detector with decision feedback is able to considerably improve the receiver robustness with a limited complexity increase. We will also discuss the channel estimation and the receiver adaptivity to time-varying channel conditions as well as the problem of the frequency acquisition and tracking. Finally, a new two-dimensional (polarization/time) differential encoding rule is proposed to overcome a polarization-ambiguity problem. In the numerical results, the receiver performance will be assessed versus the receiver complexity

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Study of phase noise in optical coherent systems

    Get PDF
    Le bruit de phase est un problème important dans la conception de systèmes cohérents optiques. Bien que le bruit de phase soit étudié énormément dans les communications sans fil, certains aspects de bruit de phase sont nouveaux dans des systèmes cohérents optiques. Dans cette thèse, nous explorons les statistiques de bruit de phase dans les systèmes optiques cohérentes et proposons une nouvelle technique pour améliorer la robustesse du système envers le bruit de phase. Notre première contribution traite de l’étude des statistiques de bruit de phase en présence de compensation électronique de la dispersion chromatique (CD) dans des systèmes cohérents. Nous montrons que le modèle proposé précédemment pour l’interaction de CD avec bruit de phase doit être modifié à cause d’un modèle trop simple pour la récupération de phase. Nous dérivons une expression plus précise pour le bruit de phase estimé par la récupération de phase avec décision dirigée (DD), et utilisons cette expression pour modifier les statistiques de décision pour les symboles reçus. Nous calculons le taux d’erreur binaire (BER) pour le format de transmission DQPSK semi-analytiquement en utilisant nos statistiques de décision modifiées et montrons que pour la récupération de phase idéale, le BER semi-analytique est bien assorti avec le BER simulé avec la technique Monte-Carlo (MC). Notre deuxième contribution est l’adaptation d’une technique de codage MLCM pour les systèmes cohérents limités par le bruit de phase et le bruit blanc additif Gaussien (AWGN). Nous montrons que la combinaison d’une constellation optimisée pour le bruit de phase avec MLCM offre un système robuste à complexité modérée. Nous vérifions que la performance de MLCM dans des systèmes cohérents avec constellations 16-aires se détériorés par le bruit de phase non-linéaire et de Wiener. Pour le bruit de phase non-linéaire, notre conception de MLCM démontre une performance supérieure par rapport àune conception de MLCM déjà présente dans la littérature. Pour le bruit de phase de Wiener, nous comparons deux format de transmission, constellations carrées et optimisée pour bruit de phase, et deux techniques de codage, MLCM et codage à débit uniforme. Nos résultats expérimentaux pour BER après codage suivent les mêmes tendances que le BER simulé et confirment notre conception.Phase noise is an important issue in designing today’s optical coherent systems. Although phase noise is studied heavily in wireless communications, some aspects of phase noise are novel in optical coherent systems. In this thesis we explore phase noise statistics in optical coherent systems and propose a novel technique to increase system robustness toward phase noise. Our first contribution deals with the study of phase noise statistics in the presence of electronic chromatic dispersion (CD) compensation in coherent systems. We show that previously proposed model for phase noise and CD interaction must be modified due to an overly simple model of carrier phase recovery. We derive a more accurate expression for the estimated phase noise of decision directed (DD) carrier phase recovery, and use this expression to modify the decision statistics of received symbols. We calculate bit error rate (BER) of a differential quadrature phase shift keying (DQPSK) system semi-analytically using our modified decision statistics and show that for ideal DD carrier phase recovery the semi-analytical BER matches the BER simulated via Monte-Carlo (MC) technique. We show that the semi-analytical BER is a lower bound of simulated BER from Viterbi-Viterbi (VV) carrier phase recovery for a wide range of practical system parameters. Our second contribution is concerned with adapting a multi-level coded modulation (MLCM) technique for phase noise and additive white Gaussian noise (AWGN) limited coherent system. We show that the combination of a phase noise optimized constellation with MLCM offers a phase-noise robust system at moderate complexity. We propose a numerical method to design set-partitioning (mapping bits to symbols) and optimizing code rates for minimum block error rate (BLER).We verify MLCM performance in coherent systems of 16-ary constellations impaired by nonlinear and Wiener phase noise. For nonlinear phase noise, superior performance of our MLCM design over a previously designed MLCM system is demonstrated in terms of BLER. For Wiener phase noise, we compare optimized and square 16-QAM constellations assuming either MLCM or uniform rate coding. We compare post forward error correction (FEC) BER in addition to BLER by both simulation and experiment and show that superior BLER performance is translated into post FEC BER. Our experimental post FEC BER results follow the same trends as simulated BER, validating our design
    corecore