77,067 research outputs found

    Particle Efficient Importance Sampling

    Full text link
    The efficient importance sampling (EIS) method is a general principle for the numerical evaluation of high-dimensional integrals that uses the sequential structure of target integrands to build variance minimising importance samplers. Despite a number of successful applications in high dimensions, it is well known that importance sampling strategies are subject to an exponential growth in variance as the dimension of the integration increases. We solve this problem by recognising that the EIS framework has an offline sequential Monte Carlo interpretation. The particle EIS method is based on non-standard resampling weights that take into account the look-ahead construction of the importance sampler. We apply the method for a range of univariate and bivariate stochastic volatility specifications. We also develop a new application of the EIS approach to state space models with Student's t state innovations. Our results show that the particle EIS method strongly outperforms both the standard EIS method and particle filters for likelihood evaluation in high dimensions. Moreover, the ratio between the variances of the particle EIS and particle filter methods remains stable as the time series dimension increases. We illustrate the efficiency of the method for Bayesian inference using the particle marginal Metropolis-Hastings and importance sampling squared algorithms

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices

    Bayesian Inference on Dynamic Models with Latent Factors

    Get PDF
    In time series analysis, latent factors are often introduced to model the heterogeneous time evolution of the observed processes. The presence of unobserved components makes the maximum likelihood estimation method more difficult to apply. A Bayesian approach can sometimes be preferable since it permits to treat general state space models and makes easier the simulation based approach to parameters estimation and latent factors filtering. The paper examines economic time series models in a Bayesian perspective focusing, through some examples, on the extraction of the business cycle components. We briefly review some general univariate Bayesian dynamic models and discuss the simulation based techniques, such as Gibbs sampling, adaptive importance sampling and finally suggest the use of the particle filter, for parameter estimation and latent factor extraction.Bayesian Dynamic Models, Simulation Based Inference, Particle Filters, Latent Factors, Business Cycle

    Lookahead Strategies for Sequential Monte Carlo

    Get PDF
    Based on the principles of importance sampling and resampling, sequential Monte Carlo (SMC) encompasses a large set of powerful techniques dealing with complex stochastic dynamic systems. Many of these systems possess strong memory, with which future information can help sharpen the inference about the current state. By providing theoretical justification of several existing algorithms and introducing several new ones, we study systematically how to construct efficient SMC algorithms to take advantage of the "future" information without creating a substantially high computational burden. The main idea is to allow for lookahead in the Monte Carlo process so that future information can be utilized in weighting and generating Monte Carlo samples, or resampling from samples of the current state.Comment: Published in at http://dx.doi.org/10.1214/12-STS401 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Free energy Sequential Monte Carlo, application to mixture modelling

    Full text link
    We introduce a new class of Sequential Monte Carlo (SMC) methods, which we call free energy SMC. This class is inspired by free energy methods, which originate from Physics, and where one samples from a biased distribution such that a given function ξ(θ)\xi(\theta) of the state θ\theta is forced to be uniformly distributed over a given interval. From an initial sequence of distributions (πt)(\pi_t) of interest, and a particular choice of ξ(θ)\xi(\theta), a free energy SMC sampler computes sequentially a sequence of biased distributions (π~t)(\tilde{\pi}_{t}) with the following properties: (a) the marginal distribution of ξ(θ)\xi(\theta) with respect to π~t\tilde{\pi}_{t} is approximatively uniform over a specified interval, and (b) π~t\tilde{\pi}_{t} and πt\pi_{t} have the same conditional distribution with respect to ξ\xi. We apply our methodology to mixture posterior distributions, which are highly multimodal. In the mixture context, forcing certain hyper-parameters to higher values greatly faciliates mode swapping, and makes it possible to recover a symetric output. We illustrate our approach with univariate and bivariate Gaussian mixtures and two real-world datasets.Comment: presented at "Bayesian Statistics 9" (Valencia meetings, 4-8 June 2010, Benidorm
    • …
    corecore