818 research outputs found

    Counting Linear Extensions in Practice : MCMC versus Exponential Monte Carlo

    Get PDF
    Counting the linear extensions of a given partial order is a #P-complete problem that arises in numerous applications. For polynomial-time approximation, several Markov chain Monte Carlo schemes have been proposed; however, little is known of their efficiency in practice. This work presents an empirical evaluation of the state-of-the-art schemes and investigates a number of ideas to enhance their performance. In addition, we introduce a novel approximation scheme, adaptive relaxation Monte Carlo (ARMC), that leverages exact exponential-time counting algorithms. We show that approximate counting is feasible up to a few hundred elements on various classes of partial orders, and within this range ARMC typically outperforms the other schemes.Peer reviewe

    Coalition structure generation over graphs

    No full text
    We give the analysis of the computational complexity of coalition structure generation over graphs. Given an undirected graph G = (N,E) and a valuation function v : P(N) → R over the subsets of nodes, the problem is to find a partition of N into connected subsets, that maximises the sum of the components values. This problem is generally NP-complete; in particular, it is hard for a defined class of valuation functions which are independent of disconnected members — that is, two nodes have no effect on each others marginal contribution to their vertex separator. Nonetheless, for all such functions we provide bounds on the complexity of coalition structure generation over general and minor free graphs. Our proof is constructive and yields algorithms for solving corresponding instances of the problem. Furthermore, we derive linear time bounds for graphs of bounded treewidth. However, as we show, the problem remains NP-complete for planar graphs, and hence, for any Kk minor free graphs where k ≥ 5. Moreover, a 3-SAT problem with m clauses can be represented by a coalition structure generation problem over a planar graph with O(m2) nodes. Importantly, our hardness result holds for a particular subclass of valuation functions, termed edge sum, where the value of each subset of nodes is simply determined by the sum of given weights of the edges in the induced subgraph

    Fast Exact Inference for Recursive Cardinality Models

    Get PDF
    Cardinality potentials are a generally useful class of high order potential that affect probabilities based on how many of D binary variables are active. Maximum a posteriori (MAP) inference for cardinality potential models is well-understood, with efficient computations taking O(D log D) time. Yet efficient marginalization and sampling have not been addressed as thoroughly in the machine learning community. We show that there exists a simple algorithm for computing marginal probabilities and drawing exact joint samples that runs in O(D log2 D) time, and we show how to frame the algorithm as efficient belief propagation in a low order tree-structured model that includes additional auxiliary variables. We then develop a new, more general class of models, termed Recursive Cardinality models, which take advantage of this efficiency. Finally, we show how to do efficient exact inference in models composed of a tree structure and a cardinality potential. We explore the expressive power of Recursive Cardinality models and empirically demonstrate their utility.Engineering and Applied Science
    • …
    corecore