36,653 research outputs found

    Optimization under Uncertainty in the Era of Big Data and Deep Learning: When Machine Learning Meets Mathematical Programming

    Full text link
    This paper reviews recent advances in the field of optimization under uncertainty via a modern data lens, highlights key research challenges and promise of data-driven optimization that organically integrates machine learning and mathematical programming for decision-making under uncertainty, and identifies potential research opportunities. A brief review of classical mathematical programming techniques for hedging against uncertainty is first presented, along with their wide spectrum of applications in Process Systems Engineering. A comprehensive review and classification of the relevant publications on data-driven distributionally robust optimization, data-driven chance constrained program, data-driven robust optimization, and data-driven scenario-based optimization is then presented. This paper also identifies fertile avenues for future research that focuses on a closed-loop data-driven optimization framework, which allows the feedback from mathematical programming to machine learning, as well as scenario-based optimization leveraging the power of deep learning techniques. Perspectives on online learning-based data-driven multistage optimization with a learning-while-optimizing scheme is presented

    A nonmonotone spectral projected gradient method for large-scale topology optimization problems

    Full text link
    An efficient gradient-based method to solve the volume constrained topology optimization problems is presented. Each iterate of this algorithm is obtained by the projection of a Barzilai-Borwein step onto the feasible set consisting of box and one linear constraints (volume constraint). To ensure the global convergence, an adaptive nonmonotone line search is performed along the direction that is given by the current and projection point. The adaptive cyclic reuse of the Barzilai-Borwein step is applied as the initial stepsize. The minimum memory requirement, the guaranteed convergence property, and almost only one function and gradient evaluations per iteration make this new method very attractive within common alternative methods to solve large-scale optimal design problems. Efficiency and feasibility of the presented method are supported by numerical experiments

    Asynchronous parallel primal-dual block coordinate update methods for affinely constrained convex programs

    Full text link
    Recent several years have witnessed the surge of asynchronous (async-) parallel computing methods due to the extremely big data involved in many modern applications and also the advancement of multi-core machines and computer clusters. In optimization, most works about async-parallel methods are on unconstrained problems or those with block separable constraints. In this paper, we propose an async-parallel method based on block coordinate update (BCU) for solving convex problems with nonseparable linear constraint. Running on a single node, the method becomes a novel randomized primal-dual BCU with adaptive stepsize for multi-block affinely constrained problems. For these problems, Gauss-Seidel cyclic primal-dual BCU needs strong convexity to have convergence. On the contrary, merely assuming convexity, we show that the objective value sequence generated by the proposed algorithm converges in probability to the optimal value and also the constraint residual to zero. In addition, we establish an ergodic O(1/k)O(1/k) convergence result, where kk is the number of iterations. Numerical experiments are performed to demonstrate the efficiency of the proposed method and significantly better speed-up performance than its sync-parallel counterpart

    A Low-Rank Coordinate-Descent Algorithm for Semidefinite Programming Relaxations of Optimal Power Flow

    Full text link
    The alternating-current optimal power flow (ACOPF) is one of the best known non-convex non-linear optimisation problems. We present a novel re-formulation of ACOPF, which is based on lifting the rectangular power-voltage rank-constrained formulation, and makes it possible to derive alternative SDP relaxations. For those, we develop a first-order method based on the parallel coordinate descent with a novel closed-form step based on roots of cubic polynomials

    Adaptive FISTA for Non-convex Optimization

    Full text link
    In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class of SR1 (identity minus rank 1) proximal quasi-Newton methods. Convergence is proved in a general non-convex setting, and hence, as a byproduct, we also obtain new convergence guarantees for proximal quasi-Newton methods. The efficiency of the new method is shown in numerical experiments on a sparsity regularized non-linear inverse problem

    Constrained Deep Learning using Conditional Gradient and Applications in Computer Vision

    Full text link
    A number of results have recently demonstrated the benefits of incorporating various constraints when training deep architectures in vision and machine learning. The advantages range from guarantees for statistical generalization to better accuracy to compression. But support for general constraints within widely used libraries remains scarce and their broader deployment within many applications that can benefit from them remains under-explored. Part of the reason is that Stochastic gradient descent (SGD), the workhorse for training deep neural networks, does not natively deal with constraints with global scope very well. In this paper, we revisit a classical first order scheme from numerical optimization, Conditional Gradients (CG), that has, thus far had limited applicability in training deep models. We show via rigorous analysis how various constraints can be naturally handled by modifications of this algorithm. We provide convergence guarantees and show a suite of immediate benefits that are possible -- from training ResNets with fewer layers but better accuracy simply by substituting in our version of CG to faster training of GANs with 50% fewer epochs in image inpainting applications to provably better generalization guarantees using efficiently implementable forms of recently proposed regularizers

    Robust optimization of a broad class of heterogeneous vehicle routing problems under demand uncertainty

    Full text link
    This paper studies robust variants of an extended model of the classical Heterogeneous Vehicle Routing Problem (HVRP), where a mixed fleet of vehicles with different capacities, availabilities, fixed costs and routing costs is used to serve customers with uncertain demand. This model includes, as special cases, all variants of the HVRP studied in the literature with fixed and unlimited fleet sizes, accessibility restrictions at customer locations, as well as multiple depots. Contrary to its deterministic counterpart, the goal of the robust HVRP is to determine a minimum-cost set of routes and fleet composition that remains feasible for all demand realizations from a pre-specified uncertainty set. To solve this problem, we develop robust versions of classical node- and edge-exchange neighborhoods that are commonly used in local search and establish that efficient evaluation of the local moves can be achieved for five popular classes of uncertainty sets. The proposed local search is then incorporated in a modular fashion within two metaheuristic algorithms to determine robust HVRP solutions. The quality of the metaheuristic solutions is quantified using an integer programming model that provides lower bounds on the optimal solution. An extensive computational study on literature benchmarks shows that the proposed methods allow us to obtain high quality robust solutions for different uncertainty sets and with minor additional effort compared to deterministic solutions.Comment: 54 pages, 10 figures, 12 table

    A Learning-based Power Management for Networked Microgrids Under Incomplete Information

    Full text link
    This paper presents an approximate Reinforcement Learning (RL) methodology for bi-level power management of networked Microgrids (MG) in electric distribution systems. In practice, the cooperative agent can have limited or no knowledge of the MG asset behavior and detailed models behind the Point of Common Coupling (PCC). This makes the distribution systems unobservable and impedes conventional optimization solutions for the constrained MG power management problem. To tackle this challenge, we have proposed a bi-level RL framework in a price-based environment. At the higher level, a cooperative agent performs function approximation to predict the behavior of entities under incomplete information of MG parametric models; while at the lower level, each MG provides power-flow-constrained optimal response to price signals. The function approximation scheme is then used within an adaptive RL framework to optimize the price signal as the system load and solar generation change over time. Numerical experiments have verified that, compared to previous works in the literature, the proposed privacy-preserving learning model has better adaptability and enhanced computational speed

    Boosting Cloud Data Analytics using Multi-Objective Optimization

    Full text link
    Data analytics in the cloud has become an integral part of enterprise businesses. Big data analytics systems, however, still lack the ability to take user performance goals and budgetary constraints for a task, collectively referred to as task objectives, and automatically configure an analytic job to achieve these objectives. This paper presents a data analytics optimizer that can automatically determine a cluster configuration with a suitable number of cores as well as other system parameters that best meet the task objectives. At a core of our work is a principled multi-objective optimization (MOO) approach that computes a Pareto optimal set of job configurations to reveal tradeoffs between different user objectives, recommends a new job configuration that best explores such tradeoffs, and employs novel optimizations to enable such recommendations within a few seconds. We present efficient incremental algorithms based on the notion of a Progressive Frontier for realizing our MOO approach and implement them into a Spark-based prototype. Detailed experiments using benchmark workloads show that our MOO techniques provide a 2-50x speedup over existing MOO methods, while offering good coverage of the Pareto frontier. When compared to Ottertune, a state-of-the-art performance tuning system, our approach recommends configurations that yield 26\%-49\% reduction of running time of the TPCx-BB benchmark while adapting to different application preferences on multiple objectives

    Particle Swarm Optimization: A survey of historical and recent developments with hybridization perspectives

    Full text link
    Particle Swarm Optimization (PSO) is a metaheuristic global optimization paradigm that has gained prominence in the last two decades due to its ease of application in unsupervised, complex multidimensional problems which cannot be solved using traditional deterministic algorithms. The canonical particle swarm optimizer is based on the flocking behavior and social co-operation of birds and fish schools and draws heavily from the evolutionary behavior of these organisms. This paper serves to provide a thorough survey of the PSO algorithm with special emphasis on the development, deployment and improvements of its most basic as well as some of the state-of-the-art implementations. Concepts and directions on choosing the inertia weight, constriction factor, cognition and social weights and perspectives on convergence, parallelization, elitism, niching and discrete optimization as well as neighborhood topologies are outlined. Hybridization attempts with other evolutionary and swarm paradigms in selected applications are covered and an up-to-date review is put forward for the interested reader.Comment: 34 pages, 7 table
    • …
    corecore