435 research outputs found

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks

    A Review on Skin Disease Classification and Detection Using Deep Learning Techniques

    Get PDF
    Skin cancer ranks among the most dangerous cancers. Skin cancers are commonly referred to as Melanoma. Melanoma is brought on by genetic faults or mutations on the skin, which are caused by Unrepaired Deoxyribonucleic Acid (DNA) in skin cells. It is essential to detect skin cancer in its infancy phase since it is more curable in its initial phases. Skin cancer typically progresses to other regions of the body. Owing to the disease's increased frequency, high mortality rate, and prohibitively high cost of medical treatments, early diagnosis of skin cancer signs is crucial. Due to the fact that how hazardous these disorders are, scholars have developed a number of early-detection techniques for melanoma. Lesion characteristics such as symmetry, colour, size, shape, and others are often utilised to detect skin cancer and distinguish benign skin cancer from melanoma. An in-depth investigation of deep learning techniques for melanoma's early detection is provided in this study. This study discusses the traditional feature extraction-based machine learning approaches for the segmentation and classification of skin lesions. Comparison-oriented research has been conducted to demonstrate the significance of various deep learning-based segmentation and classification approaches

    Deep recurrent neural networks with attention mechanisms for respiratory anomaly classification.

    Get PDF
    In recent years, a variety of deep learning techniques and methods have been adopted to provide AI solutions to issues within the medical field, with one specific area being audio-based classification of medical datasets. This research aims to create a novel deep learning architecture for this purpose, with a variety of different layer structures implemented for undertaking audio classification. Specifically, bidirectional Long Short-Term Memory (BiLSTM) and Gated Recurrent Units (GRU) networks in conjunction with an attention mechanism, are implemented in this research for chronic and non-chronic lung disease and COVID-19 diagnosis. We employ two audio datasets, i.e. the Respiratory Sound and the Coswara datasets, to evaluate the proposed model architectures pertaining to lung disease classification. The Respiratory Sound Database contains audio data with respect to lung conditions such as Chronic Obstructive Pulmonary Disease (COPD) and asthma, while the Coswara dataset contains coughing audio samples associated with COVID-19. After a comprehensive evaluation and experimentation process, as the most performant architecture, the proposed attention BiLSTM network (A-BiLSTM) achieves accuracy rates of 96.2% and 96.8% for the Respiratory Sound and the Coswara datasets, respectively. Our research indicates that the implementation of the BiLSTM and attention mechanism was effective in improving performance for undertaking audio classification with respect to various lung condition diagnoses

    Intelligent human action recognition using an ensemble model of evolving deep networks with swarm-based optimization.

    Get PDF
    Automatic interpretation of human actions from realistic videos attracts increasing research attention owing to its growing demand in real-world deployments such as biometrics, intelligent robotics, and surveillance. In this research, we propose an ensemble model of evolving deep networks comprising Convolutional Neural Networks (CNNs) and bidirectional Long Short-Term Memory (BLSTM) networks for human action recognition. A swarm intelligence (SI)-based algorithm is also proposed for identifying the optimal hyper-parameters of the deep networks. The SI algorithm plays a crucial role for determining the BLSTM network and learning configurations such as the learning and dropout rates and the number of hidden neurons, in order to establish effective deep features that accurately represent the temporal dynamics of human actions. The proposed SI algorithm incorporates hybrid crossover operators implemented by sine, cosine, and tanh functions for multiple elite offspring signal generation, as well as geometric search coefficients extracted from a three-dimensional super-ellipse surface. Moreover, it employs a versatile search process led by the yielded promising offspring solutions to overcome stagnation. Diverse CNN–BLSTM networks with distinctive hyper-parameter settings are devised. An ensemble model is subsequently constructed by aggregating a set of three optimized CNN–BLSTM​ networks based on the average prediction probabilities. Evaluated using several publicly available human action data sets, our evolving ensemble deep networks illustrate statistically significant superiority over those with default and optimal settings identified by other search methods. The proposed SI algorithm also shows great superiority over several other methods for solving diverse high-dimensional unimodal and multimodal optimization functions with artificial landscapes

    Failure Mode Identification of Elastomer for Well Completion Systems using Mask R-CNN

    Get PDF

    SIECI NEURONOWE Z KERAS W DIAGNOSTYCE ZMIAN SKÓRNYCH

    Get PDF
    Abstract. Melanoma is currently one of the most dangerous skin diseases, in addition many others appear in the population. Scientists are developing techniques for early non-invasive skin lesions diagnosis from dermatoscopic images, for this purpose neural networks are increasingly used. Many tools are being developed to allow for faster implementation of the network, including the Keras package. . The article presents selected methods of diagnosing skin diseases, including the process of classification, features selection, extracting the skin lesion from the whole image.The described methods have been implemented using deep neural networks available in the Keras package. The article draws attention to the effectiveness, specificity, accuracy of classification based on available data sets, attention was paid to tools that allow for more effective operation of algorithms.Melanoma jest obecnie jedną z najbardziej niebezpiecznych chorób skóry, oprócz niej pojawia się w populacji wiele innych. Naukowcy rozwijają techniki wczesnego nieinwazyjnego diagnozowania zmian skórnych z obrazów dermatoskopowych, w tym celu coraz częściej wykorzystywane są sieci neuronowe. Powstaje wiele narzędzi powzalajcych na szybszą implementację sieci należy do niej pakiet Keras. W artykule przedstawiono wybrane metody diagnostyki chorób skóry, należy do nich proces klasyfikacji, selekcji cech, wyodrębnienia zmiany skórnej z całego obrazu. Opisane metody zostały zostały zaimplementowane za pomocą dostępnych w pakiecie Keras głębokich sieci neuronowych. W artykule zwrócono uwagę na skuteczność, specyficzność, dokładność klasyfikacji w oparciu o dostępne zestawy danych, zwrócono uwagę na narzędzi pozwalające na efektywniejsze działanie algorytmów

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Deep learning based melanoma diagnosis using dermoscopic images

    Get PDF
    The most common malignancies in the world are skin cancers, with melanomas being the most lethal. The emergence of Convolutional Neural Networks (CNNs) has provided a highly compelling method for medical diagnosis. This research therefore conducts transfer learning with grid search based hyper-parameter fine-tuning using six state-of-the-art CNN models for the classification of benign nevus and malignant melanomas, with the models then being exported, implemented, and tested on a proof-of-concept Android application. Evaluated using Dermofit Image Library and PH2 skin lesion data sets, the empirical results indicate that the ResNeXt50 model achieves the highest accuracy rate with fast execution time, and a relatively small model size. It compares favourably with other related methods for melanoma diagnosis reported in the literature

    Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models

    Get PDF
    In this research, we propose Particle Swarm Optimization (PSO)-enhanced ensemble deep neural networks for optic disc (OD) segmentation using retinal images. An improved PSO algorithm with six search mechanisms to diversify the search process is introduced. It consists of an accelerated super-ellipse action, a refined super-ellipse operation, a modified PSO operation, a random leader-based search operation, an average leader-based search operation and a spherical random walk mechanism for swarm leader enhancement. Owing to the superior segmentation capabilities of Mask R-CNN, transfer learning with a PSO-based hyper-parameter identification method is employed to generate the fine-tuned segmenters for OD segmentation. Specifically, we optimize the learning parameters, which include the learning rate and momentum of the transfer learning process, using the proposed PSO algorithm. To overcome the bias of single networks, an ensemble segmentation model is constructed. It incorporates the results of distinctive base segmenters using a pixel-level majority voting mechanism to generate the final segmentation outcome. The proposed ensemble network is evaluated using the Messidor and Drions data sets and is found to significantly outperform other deep ensemble networks and hybrid ensemble clustering models that are incorporated with both the original and state-of-the-art PSO variants. Additionally, the proposed method statistically outperforms existing studies on OD segmentation and other search methods for solving diverse unimodal and multimodal benchmark optimization functions and the detection of Diabetic Macular Edema
    corecore