1,739 research outputs found

    Comparative Study Of Congestion Control Techniques In High Speed Networks

    Get PDF
    Congestion in network occurs due to exceed in aggregate demand as compared to the accessible capacity of the resources. Network congestion will increase as network speed increases and new effective congestion control methods are needed, especially to handle bursty traffic of todays very high speed networks. Since late 90s numerous schemes i.e. [1]...[10] etc. have been proposed. This paper concentrates on comparative study of the different congestion control schemes based on some key performance metrics. An effort has been made to judge the performance of Maximum Entropy (ME) based solution for a steady state GE/GE/1/N censored queues with partial buffer sharing scheme against these key performance metrics.Comment: 10 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS November 2009, ISSN 1947 5500, http://sites.google.com/site/ijcsis

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    Design and evaluation of an adaptive traffic conditioner in differentiated services networks

    Get PDF
    Abstract—We design and evaluate an adaptive traffic conditioner to improve application performance over the differentiated services assured forwarding behavior. The conditioner is adaptive because the marking algorithm changes based upon the current number of flows traversing through an edge router. If there are a small number of flows, the conditioner maintains and uses state information to intelligently protect critical TCP packets. On the other hand, if there are many flows going through the edge router, the conditioner only uses flow characteristics as indicated in the TCP packet headers to mark without requiring per flow state. Simulation results indicate that this adaptive conditioner improves throughput of data extensive applications like large FTP transfers, and achieves low packet delays and response times for Telnet and WWW traffic. I

    RepFlow: Minimizing Flow Completion Times with Replicated Flows in Data Centers

    Full text link
    Short TCP flows that are critical for many interactive applications in data centers are plagued by large flows and head-of-line blocking in switches. Hash-based load balancing schemes such as ECMP aggravate the matter and result in long-tailed flow completion times (FCT). Previous work on reducing FCT usually requires custom switch hardware and/or protocol changes. We propose RepFlow, a simple yet practically effective approach that replicates each short flow to reduce the completion times, without any change to switches or host kernels. With ECMP the original and replicated flows traverse distinct paths with different congestion levels, thereby reducing the probability of having long queueing delay. We develop a simple analytical model to demonstrate the potential improvement of RepFlow. Extensive NS-3 simulations and Mininet implementation show that RepFlow provides 50%--70% speedup in both mean and 99-th percentile FCT for all loads, and offers near-optimal FCT when used with DCTCP.Comment: To appear in IEEE INFOCOM 201

    Network level performance of differentiated services (diffserv) networks

    Get PDF
    The Differentiated Services (DiffServ) architecture is a promising means of providing Quality of Service (QoS) in Internet. In DiffServ networks, three service classes, or Per-hop Behaviors (PHBs), have been defined: Expedited Forwarding (EF), Assured Forwarding (AF) and Best Effort (BE). In this dissertation, the performance of DiffServ networks at the network level, such as end-to-end QoS, network stability, and fairness of bandwidth allocation over the entire network have been extensively investigated. It has been shown in literature that the end-to-end delay of EF traffic can go to infinity even in an over-provisioned network. In this dissertation, a simple scalable aggregate scheduling scheme, called Youngest Serve First (YSF) algorithm is proposed. YSF is not only able to guarantee finite end-to-end delay, but also to keep a low scheduling complexity. With respect to the Best Effort traffic, Random Exponential Marking (REM), an existing AQM scheme is studied under a new continuous time model, and its local stable condition is presented. Next, a novel virtual queue and rate based AQM scheme (VQR) is proposed, and its local stability condition has been presented. Then, a new AQM framework, Edge-based AQM (EAQM) is proposed. EAQM is easier to implement, and it achieves similar or better performance than traditional AQM schemes. With respect to the Assured Forwarding, a network-assist packet marking (NPM) scheme has been proposed. It has been demonstrated that NPM can fairly distribute bandwidth among AF aggregates based on their Committed Information Rates (CIRs) in both single and multiple bottleneck link networks
    • …
    corecore