71 research outputs found

    An investigation into semi-automated 3D city modelling

    Get PDF
    Creating three dimensional digital representations of urban areas, also known as 3D city modelling, is essential in many applications, such as urban planning, radio frequency signal propagation, flight simulation and vehicle navigation, which are of increasing importance in modern society urban centres. The main aim of the thesis is the development of a semi-automated, innovative workflow for creating 3D city models using aerial photographs and LiDAR data collected from various airborne sensors. The complexity of this aim necessitates the development of an efficient and reliable way to progress from manually intensive operations to an increased level of automation. The proposed methodology exploits the combination of different datasets, also known as data fusion, to achieve reliable results in different study areas. Data fusion techniques are used to combine linear features, extracted from aerial photographs, with either LiDAR data or any other source available including Very Dense Digital Surface Models (VDDSMs). The research proposes a method which employs a semi automated technique for 3D city modelling by fusing LiDAR if available or VDDSMs with 3D linear features extracted from stereo pairs of photographs. The building detection and the generation of the building footprint is performed with the use of a plane fitting algorithm on the LiDAR or VDDSMs using conditions based on the slope of the roofs and the minimum size of the buildings. The initial building footprint is subsequently generalized using a simplification algorithm that enhances the orthogonality between the individual linear segments within a defined tolerance. The final refinement of the building outline is performed for each linear segment using the filtered stereo matched points with a least squares estimation. The digital reconstruction of the roof shapes is performed by implementing a least squares-plane fitting algorithm on the classified VDDSMs, which is restricted by the building outlines, the minimum size of the planes and the maximum height tolerance between adjacent 3D points. Subsequently neighbouring planes are merged using Boolean operations for generation of solid features. The results indicate very detailed building models. Various roof details such as dormers and chimneys are successfully reconstructed in most cases

    An investigation into semi-automated 3D city modelling

    Get PDF
    Creating three dimensional digital representations of urban areas, also known as 3D city modelling, is essential in many applications, such as urban planning, radio frequency signal propagation, flight simulation and vehicle navigation, which are of increasing importance in modern society urban centres. The main aim of the thesis is the development of a semi-automated, innovative workflow for creating 3D city models using aerial photographs and LiDAR data collected from various airborne sensors. The complexity of this aim necessitates the development of an efficient and reliable way to progress from manually intensive operations to an increased level of automation. The proposed methodology exploits the combination of different datasets, also known as data fusion, to achieve reliable results in different study areas. Data fusion techniques are used to combine linear features, extracted from aerial photographs, with either LiDAR data or any other source available including Very Dense Digital Surface Models (VDDSMs). The research proposes a method which employs a semi automated technique for 3D city modelling by fusing LiDAR if available or VDDSMs with 3D linear features extracted from stereo pairs of photographs. The building detection and the generation of the building footprint is performed with the use of a plane fitting algorithm on the LiDAR or VDDSMs using conditions based on the slope of the roofs and the minimum size of the buildings. The initial building footprint is subsequently generalized using a simplification algorithm that enhances the orthogonality between the individual linear segments within a defined tolerance. The final refinement of the building outline is performed for each linear segment using the filtered stereo matched points with a least squares estimation. The digital reconstruction of the roof shapes is performed by implementing a least squares-plane fitting algorithm on the classified VDDSMs, which is restricted by the building outlines, the minimum size of the planes and the maximum height tolerance between adjacent 3D points. Subsequently neighbouring planes are merged using Boolean operations for generation of solid features. The results indicate very detailed building models. Various roof details such as dormers and chimneys are successfully reconstructed in most cases

    3D Recording and Interpretation for Maritime Archaeology

    Get PDF
    This open access peer-reviewed volume was inspired by the UNESCO UNITWIN Network for Underwater Archaeology International Workshop held at Flinders University, Adelaide, Australia in November 2016. Content is based on, but not limited to, the work presented at the workshop which was dedicated to 3D recording and interpretation for maritime archaeology. The volume consists of contributions from leading international experts as well as up-and-coming early career researchers from around the globe. The content of the book includes recording and analysis of maritime archaeology through emerging technologies, including both practical and theoretical contributions. Topics include photogrammetric recording, laser scanning, marine geophysical 3D survey techniques, virtual reality, 3D modelling and reconstruction, data integration and Geographic Information Systems. The principal incentive for this publication is the ongoing rapid shift in the methodologies of maritime archaeology within recent years and a marked increase in the use of 3D and digital approaches. This convergence of digital technologies such as underwater photography and photogrammetry, 3D sonar, 3D virtual reality, and 3D printing has highlighted a pressing need for these new methodologies to be considered together, both in terms of defining the state-of-the-art and for consideration of future directions. As a scholarly publication, the audience for the book includes students and researchers, as well as professionals working in various aspects of archaeology, heritage management, education, museums, and public policy. It will be of special interest to those working in the field of coastal cultural resource management and underwater archaeology but will also be of broader interest to anyone interested in archaeology and to those in other disciplines who are now engaging with 3D recording and visualization

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System

    Smoke plume segmentation of wildfire images

    Get PDF
    Aquest treball s'emmarca dins del camp d'estudi de les xarxes neuronals en Aprenentatge profund. L'objectiu del projecte és analitzar i aplicar les xarxes neuronals que hi ha avui dia en el mercat per resoldre un problema en específic. Aquest és tracta de la segmentació de plomalls de fum en incendis forestals. S'ha desenvolupat un estudi de les xarxes neuronals utilitzades per resoldre problemes de segmentació d'imatges i també una reconstrucció posterior en 3D d'aquests plomalls de fum. L'algorisme finalment escollit és tracta del model UNet, una xarxa neuronal convolucional basada en l'estructura d'autoencoders amb connexions de pas, que desenvolupa tasques d'autoaprenentatge per finalment obtenir una predicció de la classe a segmentar entrenada, en aquest cas plomalls. de fum. Posteriorment, una comparativa entre algoritmes tradicionals i el model UNet aplicat fent servir aprenentatge profund s'ha realitzat, veient que tant quantitativament com qualitativament s'aconsegueix els millors resultats aplicant el model UNet, però a la vegada comporta més temps de computació. Tots aquests models s'han desenvolupat amb el llenguatge de programació Python utilitzant els llibres d'aprenentatge automàtic Tensorflow i Keras. Dins del model UNet s'han dut a terme múltiples experiments per obtenir els diferents valors dels hiperparàmetres més adequats per a l'aplicació del projecte, obtenint una precisió del 93.45 % en el model final per a la segmentació de fum en imatges d'incendis. forestals.Este trabajo se enmarca dentro del campo de estudio de las redes neuronales en aprendizaje profundo. El objetivo del proyecto es analizar y aplicar las redes neuronales que existen hoy en día en el mercado para resolver un problema en específico. Éste se trata de la segmentación de penachos de humo en incendios forestales. Se ha desarrollado un estudio de las redes neuronales utilizadas para resolver problemas de segmentación de imágenes y también una reconstrucción posterior en 3D de estos penachos de humo. El algoritmo finalmente escogido se trata del modelo UNet, una red neuronal convolucional basada en la estructura de autoencoders con conexiones de paso, que desarrolla tareas de autoaprendizaje para finalmente obtener una predicción de la clase a segmentar entrenada, en este caso penachos de humo. Posteriormente, una comparativa entre algoritmos tradicionales y el modelo UNet aplicado utilizando aprendizaje profundo se ha realizado, viendo que tanto cuantitativa como cualitativamente se consigue los mejores resultados aplicando el modelo UNet, pero a la vez conlleva más tiempo de computación. Todos estos modelos se han desarrollado con el lenguaje de programación Python utilizando libros de aprendizaje automático Tensorflow y Keras. Dentro del modelo UNet se han llevado a cabo múltiples experimentos para obtener los distintos valores de los hiperparámetros más adecuados para la aplicación del proyecto, obteniendo una precisión del 93.45 % en el modelo final para la segmentación de humo en imágenes de incendios forestales.This work is framed within the field of study of neural networks in Deep Learning. The aim of the project is to analyse and apply the neural networks that exist today in the market to solve a specific problem. This is about the segmentation of smoke plumes in forest fires. A study of the neural networks used to solve image segmentation problems and also a subsequent 3D reconstruction of these smoke plumes has been developed. The algorithm finally chosen is the UNet model, a convolutional neural network based on the structure of autoencoders with step connections, which develops self-learning tasks to finally obtain a prediction of the class to be trained, in this case smoke plumes. Also, a comparison between traditional algorithms and the UNet model applied using deep learning has been carried out, seeing that both quantitatively and qualitatively the best results are achieved by applying the UNet model, but at the same time it involves more computing time. All these models have been developed in the Python programming language using the Tensorflow and Keras machine learning books. Within the UNet model, multiple experiments have been carried out to obtain the different hyperparameter values most suitable for the project application, obtaining an accuracy of 93.45% in the final model for smoke segmentation in wildfire images

    Simulation-based Planning of Machine Vision Inspection Systems with an Application to Laser Triangulation

    Get PDF
    Nowadays, vision systems play a central role in industrial inspection. The experts typically choose the configuration of measurements in such systems empirically. For complex inspections, however, automatic inspection planning is essential. This book proposes a simulation-based approach towards inspection planning by contributing to all components of this problem: simulation, evaluation, and optimization. As an application, inspection of a complex cylinder head by laser triangulation is studied

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF
    corecore