12,166 research outputs found

    A Spatial Domain Image Steganography Technique Based on Plane Bit Substitution Method

    Get PDF
    Steganography is the art and science of hiding information by embedding data into cover media. In this paper we propose a new method of information hiding in digital image in spatial domain. In this method we use Plane Bit Substitution Method (PBSM) technique in which message bits are embedded into the pixel value(s) of an image. We first, proposed a Steganography transformation machine (STM) for solving Binary operation for manipulation of original image with help to least significant bit (LSB) operator based matching. Second, we use pixel encryption and decryption techniques under theoretical and experimental evolution. Our experimental, techniques are sufficient to discriminate analysis of stego and cover image as each pixel based PBSM, and operand with LSB

    A Review: Video Steganography for Hiding Data

    Get PDF
    Steganography is an art of hiding the secrete message that is being send in the other non secret text. The benefit of steganography is that the expected mystery message does not pull in thoughtfulness regarding itself as an object of investigation. Our point is to conceal mystery data and picture behind the sound and feature document individually. Sound records are generally compacted for capacity or speedier transmission. Sound records can be sent in short remain solitary portions

    Review of steganalysis of digital images

    Get PDF
    Steganography is the science and art of embedding hidden messages into cover multimedia such as text, image, audio and video. Steganalysis is the counterpart of steganography, which wants to identify if there is data hidden inside a digital medium. In this study, some specific steganographic schemes such as HUGO and LSB are studied and the steganalytic schemes developed to steganalyze the hidden message are studied. Furthermore, some new approaches such as deep learning and game theory, which have seldom been utilized in steganalysis before, are studied. In the rest of thesis study some steganalytic schemes using textural features including the LDP and LTP have been implemented

    StegNet: Mega Image Steganography Capacity with Deep Convolutional Network

    Full text link
    Traditional image steganography often leans interests towards safely embedding hidden information into cover images with payload capacity almost neglected. This paper combines recent deep convolutional neural network methods with image-into-image steganography. It successfully hides the same size images with a decoding rate of 98.2% or bpp (bits per pixel) of 23.57 by changing only 0.76% of the cover image on average. Our method directly learns end-to-end mappings between the cover image and the embedded image and between the hidden image and the decoded image. We~further show that our embedded image, while with mega payload capacity, is still robust to statistical analysis.Comment: https://github.com/adamcavendish/StegNet-Mega-Image-Steganography-Capacity-with-Deep-Convolutional-Networ

    Performance Analysis of a Novel GPU Computation-to-core Mapping Scheme for Robust Facet Image Modeling

    Get PDF
    Though the GPGPU concept is well-known in image processing, much more work remains to be done to fully exploit GPUs as an alternative computation engine. This paper investigates the computation-to-core mapping strategies to probe the efficiency and scalability of the robust facet image modeling algorithm on GPUs. Our fine-grained computation-to-core mapping scheme shows a significant performance gain over the standard pixel-wise mapping scheme. With in-depth performance comparisons across the two different mapping schemes, we analyze the impact of the level of parallelism on the GPU computation and suggest two principles for optimizing future image processing applications on the GPU platform

    An information theoretic image steganalysis for LSB steganography

    Get PDF
    Steganography hides the data within a media file in an imperceptible way. Steganalysis exposes steganography by using detection measures. Traditionally, Steganalysis revealed steganography by targeting perceptible and statistical properties which results in developing secure steganography schemes. In this work, we target LSB image steganography by using entropy and joint entropy metrics for steganalysis. First, the Embedded image is processed for feature extraction then analyzed by entropy and joint entropy with their corresponding original image. Second, SVM and Ensemble classifiers are trained according to the analysis results. The decision of classifiers discriminates cover image from stego image. This scheme is further applied on attacked stego image for checking detection reliability. Performance evaluation of proposed scheme is conducted over grayscale image datasets. We analyzed LSB embedded images by Comparing information gain from entropy and joint entropy metrics. Results conclude that entropy of the suspected image is more preserving than joint entropy. As before histogram attack, detection rate with entropy metric is 70% and 98% with joint entropy metric. However after an attack, entropy metric ends with 30% detection rate while joint entropy metric gives 93% detection rate. Therefore, joint entropy proves to be better steganalysis measure with 93% detection accuracy and less false alarms with varying hiding ratio
    • …
    corecore