278 research outputs found

    Arc routing problems: A review of the past, present, and future

    Full text link
    [EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emerging applicationsThis research was supported by the Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional, Grant/Award Number: PGC2018-099428-B-I00. The Research Council of Norway, Grant/Award Numbers: 246825/O70 (DynamITe), 263031/O70 (AXIOM).Corberån, Á.; Eglese, R.; Hasle, G.; Plana, I.; Sanchís Llopis, JM. (2021). Arc routing problems: A review of the past, present, and future. Networks. 77(1):88-115. https://doi.org/10.1002/net.21965S8811577

    An updated annotated bibliography on arc routing problems

    Get PDF
    The number of arc routing publications has increased significantly in the last decade. Such an increase justifies a second annotated bibliography, a sequel to Corberán and Prins (Networks 56 (2010), 50–69), discussing arc routing studies from 2010 onwards. These studies are grouped into three main sections: single vehicle problems, multiple vehicle problems and applications. Each main section catalogs problems according to their specifics. Section 2 is therefore composed of four subsections, namely: the Chinese Postman Problem, the Rural Postman Problem, the General Routing Problem (GRP) and Arc Routing Problems (ARPs) with profits. Section 3, devoted to the multiple vehicle case, begins with three subsections on the Capacitated Arc Routing Problem (CARP) and then delves into several variants of multiple ARPs, ending with GRPs and problems with profits. Section 4 is devoted to applications, including distribution and collection routes, outdoor activities, post-disaster operations, road cleaning and marking. As new applications emerge and existing applications continue to be used and adapted, the future of arc routing research looks promising.info:eu-repo/semantics/publishedVersio

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    Le problÚme périodique de tournées sur les arcs avec contraintes de capacité et de gestion de stocks

    Get PDF
    RÉSUMÉ : Dans cette thĂšse, on introduit le problĂšme pĂ©riodique de tournĂ©es sur les arcs avec contraintes de capacitĂ© et de gestion de stocks. Les arĂȘtes d'un rĂ©seau reprĂ©sentent les clients qui nĂ©cessitent une certaine quantitĂ© de matĂ©riel. Ce matĂ©riel est mis en inventaire et consommĂ© au cours du temps. Les besoins de rĂ©approvisionnement indiquent la nature pĂ©riodique du problĂšme. Les exemples d'applications de ce problĂšme sont l’arrosage des chemins de terre dans les mines Ă  ciel ouvert pour supprimer la poussiĂšre, l'arrosage des routes dans les rĂ©seaux forestiers et l’arrosage des plantes sur les trottoirs des rues. On prend l’application de l'arrosage des routes dans les mines Ă  ciel ouvert. Un camion-citerne se dĂ©place le long des routes en arrosant de l'eau pour supprimer la poussiĂšre. À cause de sa capacitĂ© limitĂ©e, le camion doit retourner au dĂ©pĂŽt avant de commencer une nouvelle tournĂ©e. À cause de l'Ă©vaporation de l’eau, l'humiditĂ© sur les routes diminue en fonction du temps. Les routes ont besoin d’un certain niveau d'humiditĂ© pour retenir efficacement les particules de poussiĂšre. Une pĂ©nurie arrive lorsque le niveau d'humiditĂ© se trouve en dessous du niveau requis. L'objectif de cette Ă©tude est de trouver un ensemble de tournĂ©es qui dĂ©butent et finissent au dĂ©pĂŽt de telle façon que les coĂ»ts de pĂ©nalitĂ© liĂ©s Ă  la pĂ©nurie, ainsi que les coĂ»ts de routage soient minimisĂ©s. Parce que l'ordre dans lequel les arĂȘtes sont traversĂ©es et arrosĂ©es affecte le moment oĂč l'humiditĂ© est restaurĂ©e, des dĂ©cisions sur le routage et la gestion de l’inventaire sont prises simultanĂ©ment. Ce problĂšme a Ă©tĂ© traitĂ© pour les tournĂ©es sur les nƓuds, i.e., les clients sont situĂ©s aux nƓuds du rĂ©seau, et il est appelĂ© Inventory Routing Problem. Cependant, il n'a pas Ă©tĂ© traitĂ© dans le domaine de tournĂ©es sur les arcs. Étant donnĂ© la capacitĂ© limitĂ©e du camion et la nature pĂ©riodique du remplissage, on considĂšre cette application comme un problĂšme pĂ©riodique de tournĂ©es sur les arcs avec contraintes de capacitĂ© (PCARP). Au dĂ©but, on considĂšre le cas du problĂšme d’arrosage oĂč il n'existe qu'un seul dĂ©pĂŽt (rĂ©servoir d'eau) dans le rĂ©seau et un seul camion-citerne. On travaille sur un rĂ©seau mixte dans lequel, pour chaque arĂȘte, il y a deux arcs, un dans chaque direction de traverse. Il y a aussi une boucle artificielle au dĂ©pĂŽt qui reprĂ©sente le remplissage du camion. L’horizon de temps est divisĂ© en pĂ©riodes de temps de mĂȘme durĂ©e. Les coĂ»ts et les quantitĂ©s en inventaire sont calculĂ©s pour chaque pĂ©riode de temps. On Ă©labore un modĂšle de programmation linĂ©aire en nombres entiers qui est testĂ© pour des exemplaires connus du problĂšme de tournĂ©es sur les arcs avec contraintes de capacitĂ© (CARP). La solution indique la sĂ©quence optimale de traverse et d’arrosage des arĂȘtes, le remplissage du camion au dĂ©pĂŽt, s’il a lieu, et les coĂ»ts totaux de routage et de pĂ©nalitĂ© pour la pĂ©nurie sur le niveau d’humiditĂ©. Les limites de ce modĂšle sont Ă©tablies en fonction de la taille des rĂ©seaux et de la longueur de l’horizon de temps qu’on est capable de rĂ©soudre. On est capable de trouver la solution optimale pour des rĂ©seaux avec 40 Ă  55 arĂȘtes pour 20 Ă  30 pĂ©riodes de temps. Ce qui correspond Ă  un horizon de temps de 30 minutes en rĂ©alitĂ©. Deux situations sont testĂ©es, lorsque la quantitĂ© d’eau arrosĂ©e aux arĂȘtes est variable ou constante. Les rĂ©sultats sont prĂ©sentĂ©s pour valider les deux situations. La contribution de cette premiĂšre approche est le modĂšle mathĂ©matique pour rĂ©soudre le problĂšme d’arrosage des routes dans les mines Ă  ciel ouvert. La deuxiĂšme approche a pour objectif de rĂ©soudre des exemplaires de plus grande taille et pour un horizon de temps plus long. On modifie le modĂšle mathĂ©matique pour inclure plus d’un vĂ©hicule et un seul dĂ©pĂŽt. Avec ces modifications on est capable de trouver la solution optimale pour un exemplaire de petite taille, 11 arĂȘtes, pour un horizon de temps de 20 minutes. Pour rĂ©soudre des exemplaires de plus grande taille et incrĂ©menter l’horizon de temps, on utilise un algorithme heuristique appelĂ© adaptive large neighborhood search (ALNS). L’ALNS se compose de huit opĂ©rateurs de destruction et de rĂ©paration choisis au hasard pour modifier la solution existante Ă  chaque itĂ©ration. La performance des opĂ©rateurs dĂ©termine la probabilitĂ© d'ĂȘtre choisi aux itĂ©rations suivantes. Une meilleure performance de l'opĂ©rateur, en termes d'amĂ©lioration de la solution existante, correspond Ă  une plus grande probabilitĂ© d'ĂȘtre choisi. On utilise un ensemble d’exemplaires du CARP et un ensemble d’exemplaires crĂ©Ă© Ă  partir des rĂ©seaux de mines Ă  ciel ouvert rĂ©els. Cette heuristique est capable de trouver une solution rĂ©alisable pour un horizon de temps de 300 minutes. Les opĂ©rateurs sont testĂ©s individuellement et en les combinant entre eux en utilisant un critĂšre d’arrĂȘt de 25000 itĂ©rations. On trouve la combinaison qui obtient la meilleure amĂ©lioration du coĂ»t total pour chaque ensemble d’exemplaires. Les contributions de cette approche sont la modification du modĂšle mathĂ©matique afin d'inclure plus d'un vĂ©hicule et l'application de l’heuristique ALNS pour obtenir une solution Ă  ce nouveau problĂšme. Finalement, un dernier problĂšme est abordĂ©. Il consiste Ă  localiser un ou plusieurs dĂ©pĂŽts (rĂ©servoirs d'eau) le long des nƓuds du rĂ©seau pour rĂ©duire les coĂ»ts de pĂ©nurie et de routage du problĂšme d'arrosage des routes dans les mines Ă  ciel ouvert. Comme l’activitĂ© principale se trouve sur les arĂȘtes du rĂ©seau, ce problĂšme correspond Ă  un problĂšme de localisation et de tournĂ©es sur les arcs (LARP) avec une composante pĂ©riodique. Ce problĂšme a Ă©tĂ© traitĂ© pour les tournĂ©es sur les nƓuds. Cependant, il n'y a pas une autre application dans laquelle la localisation des dĂ©pĂŽts est faite dans le domaine des problĂšmes pĂ©riodiques de tournĂ©es sur les arcs. On prend des dĂ©cisions Ă  long terme telles que la localisation des dĂ©pĂŽts et des dĂ©cisions Ă  court terme telles que le routage et la gestion des stocks. Pour cette raison, plusieurs scĂ©narios sont testĂ©s et leur coĂ»t moyen est ajoutĂ© aux coĂ»ts de localisation des dĂ©pĂŽts afin d'obtenir un coĂ»t total pour le problĂšme. Les scĂ©narios sont le rĂ©sultat de changements dans les paramĂštres du problĂšme qui peuvent se produire sur un horizon de planification Ă  long terme. Trois algorithmes de localisation sont utilisĂ©s pour obtenir une solution initiale Ă  la localisation d’un et de plusieurs dĂ©pĂŽts. Ces algorithmes suivent le processus Location, allocation and Routing (L-A-R), une mĂ©thode divisĂ©e en trois parties : premiĂšrement, on place les dĂ©pĂŽts sur les nƓuds du rĂ©seau, puis on affecte les arĂȘtes aux camions et finalement on trouve une tournĂ©e. L’heuristique ALNS dĂ©veloppĂ©e pour l'approche prĂ©cĂ©dente est adaptĂ©e et utilisĂ©e pour amĂ©liorer la solution. On compare la localisation d’un dĂ©pĂŽt \`a diffĂ©rents endroits. On compare aussi les trois algorithmes de localisation. La contribution de cette partie est le dĂ©veloppement d'un algorithme appliquĂ© Ă  la localisation de dĂ©pĂŽts pour un problĂšme pĂ©riodique de tournĂ©es sur les arcs avec contraintes de capacitĂ©. ---------- ABSTRACT : This dissertation introduces the periodic capacitated arc routing problem with inventory constraints. The edges of a network act as customers that require a certain quantity of material. It is then held as inventory and consumed over time. The need for replenishment of the consumed material explains the periodic nature of the problem. Some examples of applications of this problem are the road watering in open-pit mine roads to suppress dust, road watering in forest roads and plant watering on street medians and sidewalks. This work focuses on the application of road watering in open-pit mines. A water truck travels along the roads of a mine spraying water to suppress dust. Because of its limited capacity, the truck needs to replenish at a water depot before starting a new route. Due to water evaporation, the humidity on the roads decreases over time. Roads require a certain amount of humidity to effectively retain dust particles. A shortage happens when the humidity level drops below the required level. The objective of this thesis is to find a set of routes that start and end at the depot so that the penalty costs associated with shortage, as well as the routing costs are minimized. Because the order in which roads are traversed and watered affects their humidity level, routing and inventory decisions are made simultaneously. This problem has been treated for node routing, i.e., the customers are located at the nodes of the network, and it is called the Inventory Routing Problem. However, it has not being addressed in the arc routing domain. This problem is modeled as a periodic capacitated arc routing problem due to capacity constraints and the frequency of service. The first case studied is where there is only one water depot and one vehicle to travel along the network. A mathematical model is developed using a mixed network. For each edge, there are two arcs that correspond to the direction in which the edge can be traversed. There is an artificial loop at the depot that represents the refill of the truck. The time horizon is divided in time periods of equal duration. Costs and inventory levels are calculated for each time period. The model is tested for known instances of the capacitated arc routing problem (CARP). It is able to solve to optimality networks of 40 to 55 edges for a time horizon of 20 to 30 periods. Two situations are considered where the quantity of water delivered to the edges is variable and constant. Results are reported to validate both situations. The contribution of this first approach is the mathematical model to solve the road watering problem. The mathematical model is then modified to include more than one vehicle. As the number of variables increases, it is capable of solving to optimality a network of 11 edges for a time horizon of less than 30 time periods. An adaptive large neighborhood search (ALNS) heuristic is developed to solve larger networks for a longer time horizon. It is able to provide a feasible solution for networks up to 55 edges and a time horizon of 300 time periods. The ALNS consists of an initial solution obtained using a construction algorithm and eight destroy-repair operators that are randomly selected to modify the initial solution at each iteration of the algorithm. The performance of these operators determines the probability of being selected for the next iteration. A better performance of the operator, in terms of improving the existing solution, corresponds to a higher probability of being selected. The operators are tested individually and in different combinations. The best combination is selected for each set of instances. Apart from the CARP instances, ten instances are created to test the algorithm. These new instances correspond to road networks of real open-pit mines. The contributions of this approach are the modification of the mathematical model to include more than one vehicle and the application of the ALNS to obtain a solution for this new problem. Finally, a new problem is addressed. It consists in the location of one or more water depots along the nodes of the network to reduce the shortage and routing costs. Because the solution is obtained by servicing the edges of a network, this problem corresponds to a location arc routing problem (LARP) with a periodic component. This problem has only been treated in the node routing domain. No other application has been studied for location in the arc routing domain. Long term decisions, such as depot location, are combined with short term decisions, such as routing and inventory replenishment. Several scenarios are tested and their average cost is added to the depot placement costs in order to obtain a total cost. These scenarios are the result of changes in the parameters of the problem that can occur over a long planning horizon. Three location algorithms are used to obtain an initial solution to the location of one and several depots. The algorithms follow a location, allocation and routing (L-A-R) approach in which, first the depots are placed, then the edges are assigned to the service trucks and finally, a route is formed. The ALNS developed for the previous approach is adapted and used to improve the solution. The contribution is an algorithm applied to the location of depots for a periodic capacitated arc routing problem

    Genetic algorithm for the continuous location-routing problem

    Get PDF
    This paper focuses on the continuous location-routing problem that comprises of the location of multiple depots from a given region and determining the routes of vehicles assigned to these depots. The objective of the problem is to design the delivery system of depots and routes so that the total cost is minimal. The standard location-routing problem considers a finite number of possible locations. The continuous location-routing problem allows location to infinite number of locations in a given region and makes the problem much more complex. We present a genetic algorithm that tackles both location and routing subproblems simultaneously.Web of Science29318717

    The Bi-objective Periodic Closed Loop Network Design Problem

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Reverse supply chains are becoming a crucial part of retail supply chains given the recent reforms in the consumers’ rights and the regulations by governments. This has motivated companies around the world to adopt zero-landfill goals and move towards circular economy to retain the product’s value during its whole life cycle. However, designing an efficient closed loop supply chain is a challenging undertaking as it presents a set of unique challenges, mainly owing to the need to handle pickups and deliveries at the same time and the necessity to meet the customer requirements within a certain time limit. In this paper, we model this problem as a bi-objective periodic location routing problem with simultaneous pickup and delivery as well as time windows and examine the performance of two procedures, namely NSGA-II and NRGA, to solve it. The goal is to find the best locations for a set of depots, allocation of customers to these depots, allocation of customers to service days and the optimal routes to be taken by a set of homogeneous vehicles to minimise the total cost and to minimise the overall violation from the customers’ defined time limits. Our results show that while there is not a significant difference between the two algorithms in terms of diversity and number of solutions generated, NSGA-II outperforms NRGA when it comes to spacing and runtime.Peer reviewedFinal Accepted Versio

    Variable-depth adaptive large meighbourhood search algorithm for Open Periodic Vehicle Routing Problem with time windows

    Get PDF
    The Open Periodic Vehicle Routing Problem with Time Windows (OPVRPTW) is a practical transportation routing and scheduling problem arising from real-world scenarios. It shares some common features with some classic VRP variants. The problem has a tightly constrained large-scale solution space and requires well balanced diversification and intensification in search. In Variable Depth Neighbourhood Search, large neighbourhood depth prevents the search from trapping into local optima prematurely, while small depth provides thorough exploitation in local areas. Considering the multi-dimensional solution structure and tight constraints in OPVRPTW, a Variable-Depth Adaptive Large Neighbourhood Search (VD-ALNS) algorithm is proposed in this paper. Contributions of four tailored destroy operators and three repair operators at variable depths are investigated. Comparing to existing methods, VD-ALNS makes a good trade-off between exploration and exploitation, and produces promising results on both small and large size benchmark instances
    • 

    corecore