2,269 research outputs found

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Resource Allocation for Interference Management in Wireless Networks

    Get PDF
    Interference in wireless networks is a major problem that impacts system performance quite substantially. Combined with the fact that the spectrum is limited and scarce, the performance and reliability of wireless systems significantly deteriorates and, hence, communication sessions are put at the risk of failure. In an attempt to make transmissions resilient to interference and, accordingly, design robust wireless systems, a diverse set of interference mitigation techniques are investigated in this dissertation. Depending on the rationale motivating the interfering node, interference can be divided into two categories, communication and jamming. For communication interference such as the interference created by legacy users(e.g., primary user transmitters in a cognitive radio network) at non-legacy or unlicensed users(e.g.,secondary user receivers), two mitigation techniques are presented in this dissertation. One exploits permutation trellis codes combined with M-ary frequency shift keying in order to make SU transmissions resilient to PUs’ interference, while the other utilizes frequency allocation as a mitigation technique against SU interference using Matching theory. For jamming interference, two mitigation techniques are also investigated here. One technique exploits time and structures a jammer mitigation framework through an automatic repeat request protocol. The other one utilizes power and, following a game-theoretic framework, employs a defense strategy against jamming based on a strategic power allocation. Superior performance of all of the proposed mitigation techniques is shown via numerical results

    Doctor of Philosophy

    Get PDF
    dissertationMultiple-input and multiple-output (MIMO) technique has emerged as a key feature for future generations of wireless communication systems. It increases the channel capacity proportionate to the minimum number of transmit and receive antennas. This dissertation addresses the receiver design for high-rate MIMO communications in at fading environments. The emphasis of the thesis is on the cases where channel state information (CSI) is not available and thus, clever channel estimation algorithms have to be developed to bene t from the maximum available channel capacity. The thesis makes four distinct novel contributions. First, we note that the conventional MCMC-MIMO detector presented in the prior work may deteriorate as SNR increases. We suggest and show through computer simulations that this problem to a great extent can be solved by initializing the MCMC detector with regulated states which are found through linear detectors. We also introduce the novel concept of staged-MCMC in a turbo receiver, where we start the detection process at a lower complexity and increase complexity only if the data could not be correctly detected in the present stage of data detection. Second, we note that in high-rate MIMO communications, joint data detection and channel estimation poses new challenges when a turbo loop is used to improve the quality of the estimated channel and the detected data. Erroneous detected data may propagate in the turbo loop and, thus, degrade the performance of the receiver signi cantly. This is referred to as error propagation. We propose a novel receiver that decorrelates channel estimation and the detected data to avoid the detrimental e ect of error propagation. Third, the dissertation studies joint channel estimation and MIMO detection over a continuously time-varying channel and proposes a new dual-layer channel estimator to overcome the complexity of optimal channel estimators. The proposed dual-layer channel estimator reduces the complexity of the MIMO detector with optimal channel estimator by an order of magnitude at a cost of a negligible performance degradation, on the order of 0.1 to 0.2 dB. The fourth contribution of this dissertation is to note that the Wiener ltering techniques that are discussed in this dissertation and elsewhere in the literature assume that channel (time-varying) statistics are available. We propose a new method that estimates such statistics using the coarse channel estimates obtained through pilot symbols. The dissertation also makes an additional contribution revealing di erences between the MCMC-MIMO and LMMSE-MIMO detectors. We nd that under the realistic condition where CSI has to be estimated, hence the available channel estimate will be noisy, the MCMC-MIMO detector outperforms the LMMSE-MIMO detector with a signi cant margin

    Secure Wireless Communications Based on Compressive Sensing: A Survey

    Get PDF
    IEEE Compressive sensing (CS) has become a popular signal processing technique and has extensive applications in numerous fields such as wireless communications, image processing, magnetic resonance imaging, remote sensing imaging, and anology to information conversion, since it can realize simultaneous sampling and compression. In the information security field, secure CS has received much attention due to the fact that CS can be regarded as a cryptosystem to attain simultaneous sampling, compression and encryption when maintaining the secret measurement matrix. Considering that there are increasing works focusing on secure wireless communications based on CS in recent years, we produce a detailed review for the state-of-the-art in this paper. To be specific, the survey proceeds with two phases. The first phase reviews the security aspects of CS according to different types of random measurement matrices such as Gaussian matrix, circulant matrix, and other special random matrices, which establishes theoretical foundations for applications in secure wireless communications. The second phase reviews the applications of secure CS depending on communication scenarios such as wireless wiretap channel, wireless sensor network, internet of things, crowdsensing, smart grid, and wireless body area networks. Finally, some concluding remarks are given

    Efficient Radio Resource Allocation Schemes and Code Optimizations for High Speed Downlink Packet Access Transmission

    No full text
    An important enhancement on the Wideband Code Division Multiple Access (WCDMA) air interface of the 3G mobile communications, High Speed Downlink Packet Access (HSDPA) standard has been launched to realize higher spectral utilization efficiency. It introduces the features of multicode CDMA transmission and Adaptive Modulation and Coding (AMC) technique, which makes radio resource allocation feasible and essential. This thesis studies channel-aware resource allocation schemes, coupled with fast power adjustment and spreading code optimization techniques, for the HSDPA standard operating over frequency selective channel. A two-group resource allocation scheme is developed in order to achieve a promising balance between performance enhancement and time efficiency. It only requires calculating two parameters to specify the allocations of discrete bit rates and transmitted symbol energies in all channels. The thesis develops the calculation methods of the two parameters for interference-free and interference-present channels, respectively. For the interference-present channels, the performance of two-group allocation can be further enhanced by applying a clustering-based channel removal scheme. In order to make the two-group approach more time-efficient, reduction in matrix inversions in optimum energy calculation is then discussed. When the Minimum Mean Square Error (MMSE) equalizer is applied, optimum energy allocation can be calculated by iterating a set of eigenvalues and eigenvectors. By using the MMSE Successive Interference Cancellation (SIC) receiver, the optimum energies are calculated recursively combined with an optimum channel ordering scheme for enhancement in both system performance and time efficiency. This thesis then studies the signature optimization methods with multipath channel and examines their system performances when combined with different resource allocation methods. Two multipath-aware signature optimization methods are developed by applying iterative optimization techniques, for the system using MMSE equalizer and MMSE precoder respectively. A PAM system using complex signature sequences is also examined for improving resource utilization efficiency, where two receiving schemes are proposed to fully take advantage of PAM features. In addition by applying a short chip sampling window, a Singular Value Decomposition (SVD) based interference-free signature design method is presented
    corecore