3,135 research outputs found

    Sliding Mode Control for Trajectory Tracking of a Non-holonomic Mobile Robot using Adaptive Neural Networks

    Get PDF
    In this work a sliding mode control method for a non-holonomic mobile robot using an adaptive neural network is proposed. Due to this property and restricted mobility, the trajectory tracking of this system has been one of the research topics for the last ten years. The proposed control structure combines a feedback linearization model, based on a nominal kinematic model, and a practical design that combines an indirect neural adaptation technique with sliding mode control to compensate for the dynamics of the robot. A neural sliding mode controller is used to approximate the equivalent control in the neighbourhood of the sliding manifold, using an online adaptation scheme. A sliding control is appended to ensure that the neural sliding mode control can achieve a stable closed-loop system for the trajectory-tracking control of a mobile robot with unknown non-linear dynamics. Also, the proposed control technique can reduce the steady-state error using the online adaptive neural network with sliding mode control; the design is based on Lyapunov’s theory. Experimental results show that the proposed method is effective in controlling mobile robots with large dynamic uncertaintiesFil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentin

    Nonlinear robust controller design for multi-robot systems with unknown payloads

    Get PDF
    This work is concerned with the control problem of a multi-robot system handling a payload with unknown mass properties. Force constraints at the grasp points are considered. Robust control schemes are proposed that cope with the model uncertainty and achieve asymptotic path tracking. To deal with the force constraints, a strategy for optimally sharing the task is suggested. This strategy basically consists of two steps. The first detects the robots that need help and the second arranges that help. It is shown that the overall system is not only robust to uncertain payload parameters, but also satisfies the force constraints

    Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments

    Full text link
    This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steady-state performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings
    • …
    corecore