161 research outputs found

    Design Considerations of a Sub-50 {\mu}W Receiver Front-end for Implantable Devices in MedRadio Band

    Full text link
    Emerging health-monitor applications, such as information transmission through multi-channel neural implants, image and video communication from inside the body etc., calls for ultra-low active power (<50μ{\mu}W) high data-rate, energy-scalable, highly energy-efficient (pJ/bit) radios. Previous literature has strongly focused on low average power duty-cycled radios or low power but low-date radios. In this paper, we investigate power performance trade-off of each front-end component in a conventional radio including active matching, down-conversion and RF/IF amplification and prioritize them based on highest performance/energy metric. The analysis reveals 50Ω{\Omega} active matching and RF gain is prohibitive for 50μ{\mu}W power-budget. A mixer-first architecture with an N-path mixer and a self-biased inverter based baseband LNA, designed in TSMC 65nm technology show that sub 50μ{\mu}W performance can be achieved up to 10Mbps (< 5pJ/b) with OOK modulation.Comment: Accepted to appear on International Conference on VLSI Design 2018 (VLSID

    Exploiting All-Programmable System on Chips for Closed-Loop Real-Time Neural Interfaces

    Get PDF
    High-density microelectrode arrays (HDMEAs) feature thousands of recording electrodes in a single chip with an area of few square millimeters. The obtained electrode density is comparable and even higher than the typical density of neuronal cells in cortical cultures. Commercially available HDMEA-based acquisition systems are able to record the neural activity from the whole array at the same time with submillisecond resolution. These devices are a very promising tool and are increasingly used in neuroscience to tackle fundamental questions regarding the complex dynamics of neural networks. Even if electrical or optical stimulation is generally an available feature of such systems, they lack the capability of creating a closed-loop between the biological neural activity and the artificial system. Stimuli are usually sent in an open-loop manner, thus violating the inherent working basis of neural circuits that in nature are constantly reacting to the external environment. This forbids to unravel the real mechanisms behind the behavior of neural networks. The primary objective of this PhD work is to overcome such limitation by creating a fullyreconfigurable processing system capable of providing real-time feedback to the ongoing neural activity recorded with HDMEA platforms. The potentiality of modern heterogeneous FPGAs has been exploited to realize the system. In particular, the Xilinx Zynq All Programmable System on Chip (APSoC) has been used. The device features reconfigurable logic, specialized hardwired blocks, and a dual-core ARM-based processor; the synergy of these components allows to achieve high elaboration performances while maintaining a high level of flexibility and adaptivity. The developed system has been embedded in an acquisition and stimulation setup featuring the following platforms: \u2022 3\ub7Brain BioCam X, a state-of-the-art HDMEA-based acquisition platform capable of recording in parallel from 4096 electrodes at 18 kHz per electrode. \u2022 PlexStim\u2122 Electrical Stimulator System, able to generate electrical stimuli with custom waveforms to 16 different output channels. \u2022 Texas Instruments DLP\uae LightCrafter\u2122 Evaluation Module, capable of projecting 608x684 pixels images with a refresh rate of 60 Hz; it holds the function of optical stimulation. All the features of the system, such as band-pass filtering and spike detection of all the recorded channels, have been validated by means of ex vivo experiments. Very low-latency has been achieved while processing the whole input data stream in real-time. In the case of electrical stimulation the total latency is below 2 ms; when optical stimuli are needed, instead, the total latency is a little higher, being 21 ms in the worst case. The final setup is ready to be used to infer cellular properties by means of closed-loop experiments. As a proof of this concept, it has been successfully used for the clustering and classification of retinal ganglion cells (RGCs) in mice retina. For this experiment, the light-evoked spikes from thousands of RGCs have been correctly recorded and analyzed in real-time. Around 90% of the total clusters have been classified as ON- or OFF-type cells. In addition to the closed-loop system, a denoising prototype has been developed. The main idea is to exploit oversampling techniques to reduce the thermal noise recorded by HDMEAbased acquisition systems. The prototype is capable of processing in real-time all the input signals from the BioCam X, and it is currently being tested to evaluate the performance in terms of signal-to-noise-ratio improvement

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria

    State of the art survey of technologies applicable to NASA's aeronautics, avionics and controls program

    Get PDF
    The state of the art survey (SOAS) covers six technology areas including flightpath management, aircraft control system, crew station technology, interface & integration technology, military technology, and fundamental technology. The SOAS included contributions from over 70 individuals in industry, government, and the universities

    Optimising and evaluating designs for reconfigurable hardware

    No full text
    Growing demand for computational performance, and the rising cost for chip design and manufacturing make reconfigurable hardware increasingly attractive for digital system implementation. Reconfigurable hardware, such as field-programmable gate arrays (FPGAs), can deliver performance through parallelism while also providing flexibility to enable application builders to reconfigure them. However, reconfigurable systems, particularly those involving run-time reconfiguration, are often developed in an ad-hoc manner. Such an approach usually results in low designer productivity and can lead to inefficient designs. This thesis covers three main achievements that address this situation. The first achievement is a model that captures design parameters of reconfigurable hardware and performance parameters of a given application domain. This model supports optimisations for several design metrics such as performance, area, and power consumption. The second achievement is a technique that enhances the relocatability of bitstreams for reconfigurable devices, taking into account heterogeneous resources. This method increases the flexibility of modules represented by these bitstreams while reducing configuration storage size and design compilation time. The third achievement is a technique to characterise the power consumption of FPGAs in different activity modes. This technique includes the evaluation of standby power and dedicated low-power modes, which are crucial in meeting the requirements for battery-based mobile devices

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms in everyday use concerning shuttle activities is presented. A glossary of terms pertaining to the Space Transportation System is included
    • …
    corecore