2,001 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    System level evaluation of interference in vehicular mobile broadband networks

    Get PDF

    Adaptive Multi-objective Optimization for Energy Efficient Interference Coordination in Multi-Cell Networks

    Full text link
    In this paper, we investigate the distributed power allocation for multi-cell OFDMA networks taking both energy efficiency and inter-cell interference (ICI) mitigation into account. A performance metric termed as throughput contribution is exploited to measure how ICI is effectively coordinated. To achieve a distributed power allocation scheme for each base station (BS), the throughput contribution of each BS to the network is first given based on a pricing mechanism. Different from existing works, a biobjective problem is formulated based on multi-objective optimization theory, which aims at maximizing the throughput contribution of the BS to the network and minimizing its total power consumption at the same time. Using the method of Pascoletti and Serafini scalarization, the relationship between the varying parameters and minimal solutions is revealed. Furthermore, to exploit the relationship an algorithm is proposed based on which all the solutions on the boundary of the efficient set can be achieved by adaptively adjusting the involved parameters. With the obtained solution set, the decision maker has more choices on power allocation schemes in terms of both energy consumption and throughput. Finally, the performance of the algorithm is assessed by the simulation results.Comment: 29 page

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Optimal decentralized spectral resource allocation for OFDMA downlink of femto networks via adaptive gradient vector step size approach

    Get PDF
    For the orthogonal frequency division multiple access (OFDMA) downlink of a femto network, the resource allocation scheme would aim to maximize the area spectral efficiency (ASE) subject to constraints on the radio resources per transmission interval accessible by each femtocell. An optimal resource allocation scheme for completely decentralized femtocell deployments leads to a nonlinear optimization problem because the cost function of the optimization problem is nonlinear. In this paper, an adaptive gradient vector step size approach is proposed for finding the optimal solution of the optimization problem. Computer numerical simulation results show that our proposed method is more efficient than existing exhaustive search methods

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication

    A Practical Cooperative Multicell MIMO-OFDMA Network Based on Rank Coordination

    Get PDF
    An important challenge of wireless networks is to boost the cell edge performance and enable multi-stream transmissions to cell edge users. Interference mitigation techniques relying on multiple antennas and coordination among cells are nowadays heavily studied in the literature. Typical strategies in OFDMA networks include coordinated scheduling, beamforming and power control. In this paper, we propose a novel and practical type of coordination for OFDMA downlink networks relying on multiple antennas at the transmitter and the receiver. The transmission ranks, i.e.\ the number of transmitted streams, and the user scheduling in all cells are jointly optimized in order to maximize a network utility function accounting for fairness among users. A distributed coordinated scheduler motivated by an interference pricing mechanism and relying on a master-slave architecture is introduced. The proposed scheme is operated based on the user report of a recommended rank for the interfering cells accounting for the receiver interference suppression capability. It incurs a very low feedback and backhaul overhead and enables efficient link adaptation. It is moreover robust to channel measurement errors and applicable to both open-loop and closed-loop MIMO operations. A 20% cell edge performance gain over uncoordinated LTE-A system is shown through system level simulations.Comment: IEEE Transactions or Wireless Communications, Accepted for Publicatio
    corecore