60,535 research outputs found

    Pathways to Social Evolution and Their Evolutionary Feedbacks

    Get PDF
    In the context of social evolution, the ecological drivers of selection are the phenotypes of other individuals. The social environment can thus evolve, potentially changing the adaptive value for different social strategies. Different branches of evolutionary biology have traditionally focused on different aspects of these feedbacks. Here, we synthesize behavioral ecology theory concerning evolutionarily stable strategies when fitness is frequency dependent with quantitative genetic models providing statistical descriptions of evolutionary responses to social selection. Using path analyses, we review how social interactions influence the strength of selection and how social responsiveness, social impact, and non-random social assortment affect responses to social selection. We then detail how the frequency-dependent nature of social interactions fits into this framework and how it imposes selection on traits mediating social responsiveness, social impact, and social assortment, further affecting evolutionary dynamics. Throughout, we discuss the parameters in quantitative genetics models of social evolution from a behavioral ecology perspective and identify their statistical counterparts in empirical studies. This integration of behavioral ecology and quantitative genetic perspectives should lead to greater clarity in the generation of hypotheses and more focused empirical research regarding evolutionary pathways and feedbacks inherent in specific social interactions

    Evolutionary biology for the 21st century

    Get PDF
    New theoretical and conceptual frameworks are required for evolutionary biology to capitalize on the wealth of data now becoming available from the study of genomes, phenotypes, and organisms - including humans - in their natural environments.Molecular and Cellular BiologyOrganismic and Evolutionary Biolog

    Connecting adaptive behaviour and expectations in models of innovation: The Potential Role of Artificial Neural Networks

    Get PDF
    In this methodological work I explore the possibility of explicitly modelling expectations conditioning the R&D decisions of firms. In order to isolate this problem from the controversies of cognitive science, I propose a black box strategy through the concept of “internal model”. The last part of the article uses artificial neural networks to model the expectations of firms in a model of industry dynamics based on Nelson & Winter (1982)

    Evolutionary-thinking in agricultural weed management

    Get PDF
    Agricultural weeds evolve in response to crop cultivation. Nevertheless, the central importance of evolutionary ecology for understanding weed invasion, persistence and management in agroecosystems is not widely acknowledged. This paper calls for more evolutionarily-enlightened weed management, in which management principles are informed by evolutionary biology to prevent or minimize weed adaptation and spread. As a first step, a greater knowledge of the extent, structure and significance of genetic variation within and between weed populations is required to fully assess the potential for weed adaptation. The evolution of resistance to herbicides is a classic example of weed adaptation. Even here, most research focuses on describing the physiological and molecular basis of resistance, rather than conducting studies to better understand the evolutionary dynamics of selection for resistance. We suggest approaches to increase the application of evolutionary-thinking to herbicide resistance research. Weed population dynamics models are increasingly important tools in weed management, yet these models often ignore intrapopulation and interpopulation variability, neglecting the potential for weed adaptation in response to management. Future agricultural weed management can benefit from greater integration of ecological and evolutionary principles to predict the long-term responses of weed populations to changing weed management, agricultural environments and global climate

    Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    Full text link
    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, according to its dimensions. The ENG model analysis shows that the net evolves as a scale-free graph, and justifies in a deeply physical sense- the term gas here used.Comment: 16 pages, 8 figure
    • …
    corecore