1,808 research outputs found

    Control and Stability of Residential Microgrid with Grid-Forming Prosumers

    Get PDF
    The rise of the prosumers (producers-consumers), residential customers equipped with behind-the-meter distributed energy resources (DER), such as battery storage and rooftop solar PV, offers an opportunity to use prosumer-owned DER innovatively. The thesis rests on the premise that prosumers equipped with grid-forming inverters can not only provide inertia to improve the frequency performance of the bulk grid but also support islanded operation of residential microgrids (low-voltage distribution feeder operated in an islanded mode), which can improve distribution grids’ resilience and reliability without purposely designing low-voltage (LV) distribution feeders as microgrids. Today, grid-following control is predominantly used to control prosumer DER, by which the prosumers behave as controlled current sources. These grid-following prosumers deliver active and reactive power by staying synchronized with the existing grid. However, they cannot operate if disconnected from the main grid due to the lack of voltage reference. This gives rise to the increasing interest in the use of grid-forming power converters, by which the prosumers behave as voltage sources. Grid-forming converters regulate their output voltage according to the reference of their own and exhibit load sharing with other prosumers even in islanded operation. Making use of grid-forming prosumers opens up opportunities to improve distribution grids’ resilience and enhance the genuine inertia of highly renewable-penetrated power systems. Firstly, electricity networks in many regional communities are prone to frequent power outages. Instead of purposely designing the community as a microgrid with dedicated grid-forming equipment, the LV feeder can be turned into a residential microgrid with multiple paralleled grid-forming prosumers. In this case, the LV feeder can operate in both grid-connected and islanded modes. Secondly, gridforming prosumers in the residential microgrid behave as voltage sources that respond naturally to the varying loads in the system. This is much like synchronous machines extracting kinetic energy from rotating masses. “Genuine” system inertia is thus enhanced, which is fundamentally different from the “emulated” inertia by fast frequency response (FFR) from grid-following converters. Against this backdrop, this thesis mainly focuses on two aspects. The first is the small-signal stability of such residential microgrids. In particular, the impact of the increasing number of grid-forming prosumers is studied based on the linearised model. The impact of the various dynamic response of primary sources is also investigated. The second is the control of the grid-forming prosumers aiming to provide sufficient inertia for the system. The control is focused on both the inverters and the DC-stage converters. Specifically, the thesis proposes an advanced controller for the DC-stage converters based on active disturbance rejection control (ADRC), which observes and rejects the “total disturbance” of the system, thereby enhancing the inertial response provided by prosumer DER. In addition, to make better use of the energy from prosumer-owned DER, an adaptive droop controller based on a piecewise power function is proposed, which ensures that residential ESS provide little power in the steady state while supplying sufficient power to cater for the demand variation during the transient state. Proposed strategies are verified by time-domain simulations

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Sliding Mode Control of A DC Distributed Solar Microgrid

    Get PDF
    This paper proposes a standalone distributed photovoltaic system which includes two independently controlled solar power sources, a battery storage and a resistive load. Each of the PV panels consist of cascaded DC-DC boost converters controlled through two independent sliding mode controllers. The design and simulation of the supervisory controller are also discussed. First, maximum power point tracking (MPPT) control strategy is introduced to maximize the simultaneous energy harvesting from both renewable sources. Then, according to the power generation available at each renewable source and the state of charge in the battery, four contingencies will be considered in the supervisory controller. Moreover, power converters interfacing the source and common DC bus will be controlled as voltage sources under a Pi-sliding mode controller. Numerical simulations demonstrate accurate operation of the supervisory controller and functionality of the MPPT algorithm in each operating condition

    Modeling of Magnetic Resonance Wireless Electric Vehicle Charging

    Get PDF
    Due to the fast-growing market for an electric vehicle, it is necessary that the drawbacks involved in electric vehicle technology should be overcome, therefore introducing a wireless charging technique which is more convenient as battery cost, recharge time and weight has been removed. Different wireless charging techniques for electric vehicles are discussed. This research work investigates the feasibility of wireless power transfer for Electric Vehicles by electromagnetic resonance coupling. Wireless power transfer (WPT) for Electric Vehicles by magnetic resonance coupling is of high priority due to its efficiency, high power transmission, and more considerable charging distance. Simulation results show the energy transfer efficiency between two magnetically coupled resonating coils. However, results show the effects of parameters such as an inductor, capacitor, load and coupling coefficient on efficiency. Additionally, implementation of a closed loop circuit using a three-level cascaded PI controller for the dynamic wireless electric vehicle charging to eliminate the variation of voltage because of varied spacing existing between both coils as the vehicle is in motion and thereby delivering a constant voltage and constant current to the load is carried out. Simulation results and comparison with a single level PI controller indicate the effectiveness of the control method. A fuzzy logic and neuro-fuzzy controller are implemented for the wireless electric vehicle transfer which is seen to be more robust than the PI controller as there is no undershoot in the output voltage. Furthermore, wireless power transfer with three - level cascaded PI controller with MPPT is designed. The proposed system consists of a solar PV array, boost DC/DC converter, inverter, transmitter coil, a receiver coil, rectifier, buck converter, and batteries. The design of the MPPT controller tracks the highest voltage and current from the PV array required to charge a battery in which the highest power point voltage is 61.5 V. The stability analysis for the closed-loop system has been done and the system is asymptotically stable

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Active Stabilization Techniques for Cascaded Systems in DC Microgrids

    Get PDF

    Enhancing Digital Controllability in Wideband RF Transceiver Front-Ends for FTTx Applications

    Get PDF
    Enhancing the digital controllability of wideband RF transceiver front-ends helps in widening the range of operating conditions and applications in which such systems can be employed. Technology limitations and design challenges often constrain the extensive adoption of digital controllability in RF front-ends. This work focuses on three major aspects associated with the design and implementation of a digitally controllable RF transceiver front-end for enhanced digital control. Firstly, the influence of the choice of semiconductor technology for a system-on-chip integration of digital gain control circuits are investigated. The digital control of gain is achieved by utilizing step attenuators that consist of cascaded switched attenuation stages. A design methodology is presented to evaluate the influence of the chosen technology on the performance of the three conventionally used switched attenuator topologies for desired attenuation levels, and the constraints that the technology suitable for high amplification places on the attenuator performance are examined. Secondly, a novel approach to the integrated implementation of gain slope equalization is presented, and the suitability of the proposed approach for integration within the RF front-end is verified. Thirdly, a sensitivity-aware implementation of a peak power detector is presented. The increased employment of digital gain control also increases the requirements on the sensitivity of the power detector employed for adaptive power and gain control. The design, implementation, and measurement results of a state-of-the-art wideband power detector with high sensitivity and large dynamic range are presented. The design is optimized to provide a large offset cancellation range, and the influence of offset cancellation circuits on the sensitivity of the power detector is studied. Moreover, design considerations for high sensitivity performance of the power detector are investigated, and the noise contributions from individual sub-circuits are evaluated. Finally, a wideband RF transceiver front-end is realized using a commercially available SiGe BiCMOS technology to demonstrate the enhancements in the digital controllability of the system. The RF front-end has a bandwidth of 500 MHz to 2.5 GHz, an input dynamic range of 20 dB, a digital gain control range larger than 30 dB, a digital gain slope equalization range from 1.49 dB/GHz to 3.78 dB/GHz, and employs a power detector with a sensitivity of -56 dBm and dynamic range of 64 dB. The digital control in the RF front-end is implemented using an on-chip serial-parallel-interface (SPI) that is controlled by an external micro-controller. A prototype implementation of the RF front-end system is presented as part of an RFIC intended for use in optical transceiver modules for fiber-to-the-x applications

    Power Electronics in Renewable Energy Systems

    Get PDF

    Analysis, design and implementation of a residential inductive contactless energy transfer system with multiple mobile clamps

    Get PDF
    This study presents the analysis, design and implementation of a simple and cost-effective residential inductive contactless energy transfer system with multiple mobile clamps. The topology is based on the cascaded connection of a buck converter and a high-frequency resonant inverter loaded by several output passive rectifiers. The proposed system includes a sliding transformer to supply the mobile loads, leading to a safe and flexible location of loads. The theoretical analysis and design of the proposed system is based on a mathematical model derived using the first harmonic approximation. Selected experimental results are included to verify the system features. In comparison with conventional topology, the proposed system significantly improves efficiency, complexity and cost.Peer ReviewedPostprint (author's final draft
    corecore