63 research outputs found

    Efficient acquisition, representation and rendering of light fields

    Get PDF
    In this thesis we discuss the representation of three-dimensional scenes using image data (image-based rendering), and more precisely the so-called light field approach. We start with an up-to-date survey on previous work in this young field of research. Then we propose a light field representation based on image data and additional per-pixel depth values. This enables us to reconstruct arbitrary views of the scene in an efficient way and with high quality. Furtermore, we can use the same representation to determine optimal reference views during the acquisition of a light field. We further present the so-called free form parameterization, which allows for a relatively free placement of reference views. Finally, we demonstrate a prototype of the Lumi-Shelf system, which acquires, transmits, and renders the light field of a dynamic scene at multiple frames per second.Diese Doktorarbeit beschäftigt sich mit der Repräsentierung dreidimensionaler Szenen durch Bilddaten (engl. image-based rendering, deutsch bildbasierte Bildsynthese), speziell mit dem Ansatz des sog. Lichtfelds. Nach einem aktuellen Überblick über bisherige Arbeiten in diesem jungen Forschungsgebiet stellen wir eine Datenrepräsentation vor, die auf Bilddaten mit zusätzlichen Tiefenwerten basiert. Damit sind wir in der Lage, beliebige Ansichten der Szene effizient und in hoher Qualität zu rekonstruieren sowie die optimalen Referenz-Ansichten bei der Akquisition eines Lichtfelds zu bestimmen. Weiterhin präsentieren wir die sog. Freiform-Parametrisierung, die eine relativ freie Anordnung der Referenz-Ansichten erlaubt. Abschließend demonstrieren wir einen Prototyp des Lumishelf-Systems, welches die Aufnahme, Übertragung und Darstellung des Lichtfeldes einer dynamischen Szene mit mehreren Bildern pro Sekunde ermöglicht

    Efficient acquisition, representation and rendering of light fields

    Get PDF
    In this thesis we discuss the representation of three-dimensional scenes using image data (image-based rendering), and more precisely the so-called light field approach. We start with an up-to-date survey on previous work in this young field of research. Then we propose a light field representation based on image data and additional per-pixel depth values. This enables us to reconstruct arbitrary views of the scene in an efficient way and with high quality. Furtermore, we can use the same representation to determine optimal reference views during the acquisition of a light field. We further present the so-called free form parameterization, which allows for a relatively free placement of reference views. Finally, we demonstrate a prototype of the Lumi-Shelf system, which acquires, transmits, and renders the light field of a dynamic scene at multiple frames per second.Diese Doktorarbeit beschäftigt sich mit der Repräsentierung dreidimensionaler Szenen durch Bilddaten (engl. image-based rendering, deutsch bildbasierte Bildsynthese), speziell mit dem Ansatz des sog. Lichtfelds. Nach einem aktuellen Überblick über bisherige Arbeiten in diesem jungen Forschungsgebiet stellen wir eine Datenrepräsentation vor, die auf Bilddaten mit zusätzlichen Tiefenwerten basiert. Damit sind wir in der Lage, beliebige Ansichten der Szene effizient und in hoher Qualität zu rekonstruieren sowie die optimalen Referenz-Ansichten bei der Akquisition eines Lichtfelds zu bestimmen. Weiterhin präsentieren wir die sog. Freiform-Parametrisierung, die eine relativ freie Anordnung der Referenz-Ansichten erlaubt. Abschließend demonstrieren wir einen Prototyp des Lumishelf-Systems, welches die Aufnahme, Übertragung und Darstellung des Lichtfeldes einer dynamischen Szene mit mehreren Bildern pro Sekunde ermöglicht

    Efficient, image-based appearance acquisition of real-world objects

    Get PDF
    Two ingredients are necessary to synthesize realistic images: an accurate rendering algorithm and, equally important, high-quality models in terms of geometry and reflection properties. In this dissertation we focus on capturing the appearance of real world objects. The acquired model must represent both the geometry and the reflection properties of the object in order to create new views of the object with novel illumination. Starting from scanned 3D geometry, we measure the reflection properties (BRDF) of the object from images taken under known viewing and lighting conditions. The BRDF measurement require only a small number of input images and is made even more efficient by a view planning algorithm. In particular, we propose algorithms for efficient image-to-geometry registration, and an image-based measurement technique to reconstruct spatially varying materials from a sparse set of images using a point light source. Moreover, we present a view planning algorithm that calculates camera and light source positions for optimal quality and efficiency of the measurement process. Relightable models of real-world objects are requested in various fields such as movie production, e-commerce, digital libraries, and virtual heritage.Zur Synthetisierung realistischer Bilder ist zweierlei nötig: ein akkurates Verfahren zur Beleuchtungsberechnung und, ebenso wichtig, qualitativ hochwertige Modelle, die Geometrie und Reflexionseigenschaften der Szene repräsentieren. Die Aufnahme des Erscheinungbildes realer Gegenstände steht im Mittelpunkt dieser Dissertation. Um beliebige Ansichten eines Gegenstandes unter neuer Beleuchtung zu berechnen, müssen die aufgenommenen Modelle sowohl die Geometrie als auch die Reflexionseigenschaften beinhalten. Ausgehend von einem eingescannten 3D-Geometriemodell, werden die Reflexionseigenschaften (BRDF) anhand von Bildern des Objekts gemessen, die unter kontrollierten Lichtverhältnissen aus verschiedenen Perspektiven aufgenommen wurden. Für die Messungen der BRDF sind nur wenige Eingabebilder erforderlich. Im Speziellen werden Methoden vorgestellt für die Registrierung von Bildern und Geometrie sowie für die bildbasierte Messung von variierenden Materialien. Zur zusätzlichen Steigerung der Effizienz der Aufnahme wie der Qualität des Modells, wurde ein Planungsalgorithmus entwickelt, der optimale Kamera- und Lichtquellenpositionen berechnet. Anwendung finden virtuelle 3D-Modelle bespielsweise in der Filmproduktion, im E-Commerce, in digitalen Bibliotheken wie auch bei der Bewahrung von kulturhistorischem Erbe

    Towards a High Quality Real-Time Graphics Pipeline

    Get PDF
    Modern graphics hardware pipelines create photorealistic images with high geometric complexity in real time. The quality is constantly improving and advanced techniques from feature film visual effects, such as high dynamic range images and support for higher-order surface primitives, have recently been adopted. Visual effect techniques have large computational costs and significant memory bandwidth usage. In this thesis, we identify three problem areas and propose new algorithms that increase the performance of a set of computer graphics techniques. Our main focus is on efficient algorithms for the real-time graphics pipeline, but parts of our research are equally applicable to offline rendering. Our first focus is texture compression, which is a technique to reduce the memory bandwidth usage. The core idea is to store images in small compressed blocks which are sent over the memory bus and are decompressed on-the-fly when accessed. We present compression algorithms for two types of texture formats. High dynamic range images capture environment lighting with luminance differences over a wide intensity range. Normal maps store perturbation vectors for local surface normals, and give the illusion of high geometric surface detail. Our compression formats are tailored to these texture types and have compression ratios of 6:1, high visual fidelity, and low-cost decompression logic. Our second focus is tessellation culling. Culling is a commonly used technique in computer graphics for removing work that does not contribute to the final image, such as completely hidden geometry. By discarding rendering primitives from further processing, substantial arithmetic computations and memory bandwidth can be saved. Modern graphics processing units include flexible tessellation stages, where rendering primitives are subdivided for increased geometric detail. Images with highly detailed models can be synthesized, but the incurred cost is significant. We have devised a simple remapping technique that allowsfor better tessellation distribution in screen space. Furthermore, we present programmable tessellation culling, where bounding volumes for displaced geometry are computed and used to conservatively test if a primitive can be discarded before tessellation. We introduce a general tessellation culling framework, and an optimized algorithm for rendering of displaced BĂ©zier patches, which is expected to be a common use case for graphics hardware tessellation. Our third and final focus is forward-looking, and relates to efficient algorithms for stochastic rasterization, a rendering technique where camera effects such as depth of field and motion blur can be faithfully simulated. We extend a graphics pipeline with stochastic rasterization in spatio-temporal space and show that stochastic motion blur can be rendered with rather modest pipeline modifications. Furthermore, backface culling algorithms for motion blur and depth of field rendering are presented, which are directly applicable to stochastic rasterization. Hopefully, our work in this field brings us closer to high quality real-time stochastic rendering

    Radiance interpolants for interactive scene editing and ray tracing

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 189-197).by Kavita Bala.Ph.D

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    A system that learns to recognize 3-D objects

    Get PDF
    A system that learns to recognize 3-D objects from single and multiple views is presented. It consists of three parts: a simulator of 3-D figures, a Learner, and a recognizer. The 3-D figure simulator generates and plots line drawings of certain 3-D objects. A series of transformations leads to a number of 2-D images of a 3-D object, which are considered as different views and are the basic input to the next two parts. The learner works in three stages using the method of Learning from examples. In the first stage an elementary-concept learner learns the basic entities that make up a line drawing. In the second stage a multiple-view learner learns the definitions of 3-D objects that are to be recognized from multiple views. In the third stage a single-view learner learns how to recognize the same objects from single views. The recognizer is presented with line drawings representing 3-D scenes. A single-view recognizer segments the input into faces of possible 3-D objects, and attempts to match the segmented scene with a set of single-view definitions of 3-D objects. The result of the recognition may include several alternative answers, corresponding to different 3-D objects. A unique answer can be obtained by making assumptions about hidden elements (e. g. faces) of an object and using a multiple-view recognizer. Both single-view and multiple-view recognition are based on the structural relations of the elements that make up a 3-D object. Some analytical elements (e. g. angles) of the objects are also calculated, in order to determine point containment and conveziti. The system performs well on polyhedra with triangular and quadrilateral faces. A discussion of the system's performance and suggestions for further development is given at the end. The simulator and the part of the recognizer that makes the analytical calculations are written in C. The learner and the rest of the recognizer are written in PROLOG

    Computational Methods for Medical and Cyber Security

    Get PDF
    Over the past decade, computational methods, including machine learning (ML) and deep learning (DL), have been exponentially growing in their development of solutions in various domains, especially medicine, cybersecurity, finance, and education. While these applications of machine learning algorithms have been proven beneficial in various fields, many shortcomings have also been highlighted, such as the lack of benchmark datasets, the inability to learn from small datasets, the cost of architecture, adversarial attacks, and imbalanced datasets. On the other hand, new and emerging algorithms, such as deep learning, one-shot learning, continuous learning, and generative adversarial networks, have successfully solved various tasks in these fields. Therefore, applying these new methods to life-critical missions is crucial, as is measuring these less-traditional algorithms' success when used in these fields

    Integrated Applications of Geo-Information in Environmental Monitoring

    Get PDF
    This book focuses on fundamental and applied research on geo-information technology, notably optical and radar remote sensing and algorithm improvements, and their applications in environmental monitoring. This Special Issue presents ten high-quality research papers covering up-to-date research in land cover change and desertification analyses, geo-disaster risk and damage evaluation, mining area restoration assessments, the improvement and development of algorithms, and coastal environmental monitoring and object targeting. The purpose of this Special Issue is to promote exchanges, communications and share the research outcomes of scientists worldwide and to bridge the gap between scientific research and its applications for advancing and improving society

    Understanding the flow experiences of heritage tourists.

    Get PDF
    No two tourists receive the same experience which are unique to the individual (Lounsburya and Polik 1999; Walls et al. 2011; Sharpley and Stone 2012; Nguyen and Cheung 2014). Therefore, understanding experiences from the perspective of tourists has become an arena of growing interest to researchers. How tourists evolve across a heritage visit and construct their experience is an aspect that needs further development. Tourists are moving from passively gazing at built heritage and landscapes to wanting to participate in, and engage with, the destination (Urry 2002). Engaging in tourism is considered to be a “potential source of happiness and well-being” (Sharpley and Stone 2012, p.1). The best experiences are when a tourist takes an active part and is completely immersed in the situation that they are experiencing (Csikszentmihalyi 1992). Given the importance of creating an experience in a heritage destination and the increasing annual growth in tourists to such places, research into this area is important and timely. Researchers have recently proposed Csikszentmihalyi’s flow theory as a useful framework for understanding the enjoyment experienced by tourists. The term flow refers to a state of consciousness that is experienced by individuals who are deeply involved in an enjoyable activity. The existing literature in the fields of heritage tourism and tourist experience demonstrates that although heritage experiences have been analysed, there is still a lack of research incorporating the flow experience perspective. Therefore, this study explores the field of heritage tourism and centres on experiences from the perspective of flow with the four realms (absorption, immersion, active participation, and passive participation) of the experience economy (Pine and Gilmore 1998). Using flow and experience economy, this study brings a detailed analysis of the processes at the very heart of the experience as tourists want to engage fully with the destination during their experiential process, thus enabling them to create and enjoy a highly personalised and flexible experience. A quantitative research approach is adopted using a self-completion survey to obtain the required data. The selected study area is Greenwich, London due to its rich maritime heritage and all-year-around appeal to tourists. Responses from a total of 648 respondents were analysed. An experience model was proposed and tested using structural equation modelling. An adapted scale of the experience economy’s 4Es (educational, esthetics, entertainment and escapist experiences) was fitted into flow theory and proved reliable and valid for measuring tourist experience for a heritage destination. This study indicated a strong presence of flow experience was linked to enjoyment, telepresence, engagement and esthetics. First, when heritage visitors are in a state of flow they tend to be in an extremely enjoyable experience. Second, the increased enjoyment in their heritage visit has significantly and positively influenced tourist flow experience that leads to happiness and satisfaction. Third, it is noted that more well-educated and mature tourists seek heritage experiences. Fourth, the increased level of entertainment only leads to satisfaction rather than the tourists experiencing flow. Finally, it is demonstrated that a flow state happens in moments throughout their visit. The results of this study provide baseline data on the existence of the flow phenomenon in the heritage environment. It also provides knowledge about the factors associated with the flow experience and tourists’ feelings and enjoyment in a heritage visit. This research, therefore, contributes to knowledge by providing an understanding of the important factors that contribute in creating a unique and personalised experience for tourists and, thus, informing destination management, marketing, positioning and branding
    • …
    corecore