807 research outputs found

    Concepts for on-board satellite image registration, volume 1

    Get PDF
    The NASA-NEEDS program goals present a requirement for on-board signal processing to achieve user-compatible, information-adaptive data acquisition. One very specific area of interest is the preprocessing required to register imaging sensor data which have been distorted by anomalies in subsatellite-point position and/or attitude control. The concepts and considerations involved in using state-of-the-art positioning systems such as the Global Positioning System (GPS) in concert with state-of-the-art attitude stabilization and/or determination systems to provide the required registration accuracy are discussed with emphasis on assessing the accuracy to which a given image picture element can be located and identified, determining those algorithms required to augment the registration procedure and evaluating the technology impact on performing these procedures on-board the satellite

    Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Slab Medium

    Get PDF
    [[abstract]]The application of four techniques for the shape reconstruction of a 2-D metallic cylinder buried in dielectric slab medium by measured the cattered fields outside is studied in the paper. The finite-difference time-domain (FDTD) technique is employed for electromagnetic analyses for both the forward and inverse scattering problems, while the shape reconstruction problem is transformed into optimization one during the course of inverse scattering. Then, four techniques including asynchronous particle swarm optimization (APSO), PSO, dynamic differential evolution (DDE) and self-adaptive DDE (SADDE) are applied to reconstruct the location and shape of the 2-Dmetallic cylinder for comparative purposes. The statistical performances of these algorithms are compared. The results show that SADDE outperforms PSO, APSO and DDE in terms of the ability of exploring the optima. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Curve Skeleton and Moments of Area Supported Beam Parametrization in Multi-Objective Compliance Structural Optimization

    Get PDF
    This work addresses the end-to-end virtual automation of structural optimization up to the derivation of a parametric geometry model that can be used for application areas such as additive manufacturing or the verification of the structural optimization result with the finite element method. A holistic design in structural optimization can be achieved with the weighted sum method, which can be automatically parameterized with curve skeletonization and cross-section regression to virtually verify the result and control the local size for additive manufacturing. is investigated in general. In this paper, a holistic design is understood as a design that considers various compliances as an objective function. This parameterization uses the automated determination of beam parameters by so-called curve skeletonization with subsequent cross-section shape parameter estimation based on moments of area, especially for multi-objective optimized shapes. An essential contribution is the linking of the parameterization with the results of the structural optimization, e.g., to include properties such as boundary conditions, load conditions, sensitivities or even density variables in the curve skeleton parameterization. The parameterization focuses on guiding the skeletonization based on the information provided by the optimization and the finite element model. In addition, the cross-section detection considers circular, elliptical, and tensor product spline cross-sections that can be applied to various shape descriptors such as convolutional surfaces, subdivision surfaces, or constructive solid geometry. The shape parameters of these cross-sections are estimated using stiffness distributions, moments of area of 2D images, and convolutional neural networks with a tailored loss function to moments of area. Each final geometry is designed by extruding the cross-section along the appropriate curve segment of the beam and joining it to other beams by using only unification operations. The focus of multi-objective structural optimization considering 1D, 2D and 3D elements is on cases that can be modeled using equations by the Poisson equation and linear elasticity. This enables the development of designs in application areas such as thermal conduction, electrostatics, magnetostatics, potential flow, linear elasticity and diffusion, which can be optimized in combination or individually. Due to the simplicity of the cases defined by the Poisson equation, no experts are required, so that many conceptual designs can be generated and reconstructed by ordinary users with little effort. Specifically for 1D elements, a element stiffness matrices for tensor product spline cross-sections are derived, which can be used to optimize a variety of lattice structures and automatically convert them into free-form surfaces. For 2D elements, non-local trigonometric interpolation functions are used, which should significantly increase interpretability of the density distribution. To further improve the optimization, a parameter-free mesh deformation is embedded so that the compliances can be further reduced by locally shifting the node positions. Finally, the proposed end-to-end optimization and parameterization is applied to verify a linear elasto-static optimization result for and to satisfy local size constraint for the manufacturing with selective laser melting of a heat transfer optimization result for a heat sink of a CPU. For the elasto-static case, the parameterization is adjusted until a certain criterion (displacement) is satisfied, while for the heat transfer case, the manufacturing constraints are satisfied by automatically changing the local size with the proposed parameterization. This heat sink is then manufactured without manual adjustment and experimentally validated to limit the temperature of a CPU to a certain level.:TABLE OF CONTENT III I LIST OF ABBREVIATIONS V II LIST OF SYMBOLS V III LIST OF FIGURES XIII IV LIST OF TABLES XVIII 1. INTRODUCTION 1 1.1 RESEARCH DESIGN AND MOTIVATION 6 1.2 RESEARCH THESES AND CHAPTER OVERVIEW 9 2. PRELIMINARIES OF TOPOLOGY OPTIMIZATION 12 2.1 MATERIAL INTERPOLATION 16 2.2 TOPOLOGY OPTIMIZATION WITH PARAMETER-FREE SHAPE OPTIMIZATION 17 2.3 MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION WITH THE WEIGHTED SUM METHOD 18 3. SIMULTANEOUS SIZE, TOPOLOGY AND PARAMETER-FREE SHAPE OPTIMIZATION OF WIREFRAMES WITH B-SPLINE CROSS-SECTIONS 21 3.1 FUNDAMENTALS IN WIREFRAME OPTIMIZATION 22 3.2 SIZE AND TOPOLOGY OPTIMIZATION WITH PERIODIC B-SPLINE CROSS-SECTIONS 27 3.3 PARAMETER-FREE SHAPE OPTIMIZATION EMBEDDED IN SIZE OPTIMIZATION 32 3.4 WEIGHTED SUM SIZE AND TOPOLOGY OPTIMIZATION 36 3.5 CROSS-SECTION COMPARISON 39 4. NON-LOCAL TRIGONOMETRIC INTERPOLATION IN TOPOLOGY OPTIMIZATION 41 4.1 FUNDAMENTALS IN MATERIAL INTERPOLATIONS 43 4.2 NON-LOCAL TRIGONOMETRIC SHAPE FUNCTIONS 45 4.3 NON-LOCAL PARAMETER-FREE SHAPE OPTIMIZATION WITH TRIGONOMETRIC SHAPE FUNCTIONS 49 4.4 NON-LOCAL AND PARAMETER-FREE MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION 54 5. FUNDAMENTALS IN SKELETON GUIDED SHAPE PARAMETRIZATION IN TOPOLOGY OPTIMIZATION 58 5.1 SKELETONIZATION IN TOPOLOGY OPTIMIZATION 61 5.2 CROSS-SECTION RECOGNITION FOR IMAGES 66 5.3 SUBDIVISION SURFACES 67 5.4 CONVOLUTIONAL SURFACES WITH META BALL KERNEL 71 5.5 CONSTRUCTIVE SOLID GEOMETRY 73 6. CURVE SKELETON GUIDED BEAM PARAMETRIZATION OF TOPOLOGY OPTIMIZATION RESULTS 75 6.1 FUNDAMENTALS IN SKELETON SUPPORTED RECONSTRUCTION 76 6.2 SUBDIVISION SURFACE PARAMETRIZATION WITH PERIODIC B-SPLINE CROSS-SECTIONS 78 6.3 CURVE SKELETONIZATION TAILORED TO TOPOLOGY OPTIMIZATION WITH PRE-PROCESSING 82 6.4 SURFACE RECONSTRUCTION USING LOCAL STIFFNESS DISTRIBUTION 86 7. CROSS-SECTION SHAPE PARAMETRIZATION FOR PERIODIC B-SPLINES 96 7.1 PRELIMINARIES IN B-SPLINE CONTROL GRID ESTIMATION 97 7.2 CROSS-SECTION EXTRACTION OF 2D IMAGES 101 7.3 TENSOR SPLINE PARAMETRIZATION WITH MOMENTS OF AREA 105 7.4 B-SPLINE PARAMETRIZATION WITH MOMENTS OF AREA GUIDED CONVOLUTIONAL NEURAL NETWORK 110 8. FULLY AUTOMATED COMPLIANCE OPTIMIZATION AND CURVE-SKELETON PARAMETRIZATION FOR A CPU HEAT SINK WITH SIZE CONTROL FOR SLM 115 8.1 AUTOMATED 1D THERMAL COMPLIANCE MINIMIZATION, CONSTRAINED SURFACE RECONSTRUCTION AND ADDITIVE MANUFACTURING 118 8.2 AUTOMATED 2D THERMAL COMPLIANCE MINIMIZATION, CONSTRAINT SURFACE RECONSTRUCTION AND ADDITIVE MANUFACTURING 120 8.3 USING THE HEAT SINK PROTOTYPES COOLING A CPU 123 9. CONCLUSION 127 10. OUTLOOK 131 LITERATURE 133 APPENDIX 147 A PREVIOUS STUDIES 147 B CROSS-SECTION PROPERTIES 149 C CASE STUDIES FOR THE CROSS-SECTION PARAMETRIZATION 155 D EXPERIMENTAL SETUP 15

    Weighted Quasi Interpolant Spline Approximations: Properties and Applications

    Get PDF
    Continuous representations are fundamental for modeling sampled data and performing computations and numerical simulations directly on the model or its elements. To effectively and efficiently address the approximation of point clouds we propose the Weighted Quasi Interpolant Spline Approximation method (wQISA). We provide global and local bounds of the method and discuss how it still preserves the shape properties of the classical quasi-interpolation scheme. This approach is particularly useful when the data noise can be represented as a probabilistic distribution: from the point of view of nonparametric regression, the wQISA estimator is robust to random perturbations, such as noise and outliers. Finally, we show the effectiveness of the method with several numerical simulations on real data, including curve fitting on images, surface approximation and simulation of rainfall precipitations

    Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution

    Get PDF
    [[abstract]]The inverse problem under consideration is to reconstruct the characteristic of scatterer from the scattering E field. Dynamic differential evolution (DDE) and self-adaptive dynamic differential evolution (SADDE) are stochastic-type optimization approach that aims to minimize a cost function between measurements and computer-simulated data. These algorithms are capable of retrieving the location, shape, and permittivity of the dielectric cylinder in a slab medium made of lossless materials. The finite-difference time-domain (FDTD) is employed for the analysis of the forward scattering. The comparison is carried out under the same conditions of initial population of candidate solutions and number of iterations. Numerical results indicate that SADDE outperforms the DDE a little in terms of reconstruction accuracy.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子
    corecore