10,847 research outputs found

    A Visual Active Search Framework for Geospatial Exploration

    Full text link
    Many problems can be viewed as forms of geospatial search aided by aerial imagery, with examples ranging from detecting poaching activity to human trafficking. We model this class of problems in a visual active search (VAS) framework, which takes as input an image of a broad area, and aims to identify as many examples of a target object as possible. It does this through a limited sequence of queries, each of which verifies whether an example is present in a given region. A crucial feature of VAS is that each such query is informative about the spatial distribution of target objects beyond what is captured visually (for example, due to spatial correlation). We propose a reinforcement learning approach for VAS that leverages a collection of fully annotated search tasks as training data to learn a search policy, and combines features of the input image with a natural representation of active search state. Additionally, we propose domain adaptation techniques to improve the policy at decision time when training data is not fully reflective of the test-time distribution of VAS tasks. Through extensive experiments on several satellite imagery datasets, we show that the proposed approach significantly outperforms several strong baselines. Code and data will be made public.Comment: A Pre-print Version, 21 pages, 15 figures, Code is available at: https://github.com/anindyasarkarIITH/VA

    Multimodal spatio-temporal deep learning framework for 3D object detection in instrumented vehicles

    Get PDF
    This thesis presents the utilization of multiple modalities, such as image and lidar, to incorporate spatio-temporal information from sequence data into deep learning architectures for 3Dobject detection in instrumented vehicles. The race to autonomy in instrumented vehicles or self-driving cars has stimulated significant research in developing autonomous driver assistance systems (ADAS) technologies related explicitly to perception systems. Object detection plays a crucial role in perception systems by providing spatial information to its subsequent modules; hence, accurate detection is a significant task supporting autonomous driving. The advent of deep learning in computer vision applications and the availability of multiple sensing modalities such as 360° imaging, lidar, and radar have led to state-of-the-art 2D and 3Dobject detection architectures. Most current state-of-the-art 3D object detection frameworks consider single-frame reference. However, these methods do not utilize temporal information associated with the objects or scenes from the sequence data. Thus, the present research hypothesizes that multimodal temporal information can contribute to bridging the gap between 2D and 3D metric space by improving the accuracy of deep learning frameworks for 3D object estimations. The thesis presents understanding multimodal data representations and selecting hyper-parameters using public datasets such as KITTI and nuScenes with Frustum-ConvNet as a baseline architecture. Secondly, an attention mechanism was employed along with convolutional-LSTM to extract spatial-temporal information from sequence data to improve 3D estimations and to aid the architecture in focusing on salient lidar point cloud features. Finally, various fusion strategies are applied to fuse the modalities and temporal information into the architecture to assess its efficacy on performance and computational complexity. Overall, this thesis has established the importance and utility of multimodal systems for refined 3D object detection and proposed a complex pipeline incorporating spatial, temporal and attention mechanisms to improve specific, and general class accuracy demonstrated on key autonomous driving data sets

    Endogenous measures for contextualising large-scale social phenomena: a corpus-based method for mediated public discourse

    Get PDF
    This work presents an interdisciplinary methodology for developing endogenous measures of group membership through analysis of pervasive linguistic patterns in public discourse. Focusing on political discourse, this work critiques the conventional approach to the study of political participation, which is premised on decontextualised, exogenous measures to characterise groups. Considering the theoretical and empirical weaknesses of decontextualised approaches to large-scale social phenomena, this work suggests that contextualisation using endogenous measures might provide a complementary perspective to mitigate such weaknesses. This work develops a sociomaterial perspective on political participation in mediated discourse as affiliatory action performed through language. While the affiliatory function of language is often performed consciously (such as statements of identity), this work is concerned with unconscious features (such as patterns in lexis and grammar). This work argues that pervasive patterns in such features that emerge through socialisation are resistant to change and manipulation, and thus might serve as endogenous measures of sociopolitical contexts, and thus of groups. In terms of method, the work takes a corpus-based approach to the analysis of data from the Twitter messaging service whereby patterns in users’ speech are examined statistically in order to trace potential community membership. The method is applied in the US state of Michigan during the second half of 2018—6 November having been the date of midterm (i.e. non-Presidential) elections in the United States. The corpus is assembled from the original posts of 5,889 users, who are nominally geolocalised to 417 municipalities. These users are clustered according to pervasive language features. Comparing the linguistic clusters according to the municipalities they represent finds that there are regular sociodemographic differentials across clusters. This is understood as an indication of social structure, suggesting that endogenous measures derived from pervasive patterns in language may indeed offer a complementary, contextualised perspective on large-scale social phenomena

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

    Full text link
    The robustness of 3D perception systems under natural corruptions from environments and sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets often contain data that are meticulously cleaned. Such configurations, however, cannot reflect the reliability of perception models during the deployment stage. In this work, we present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios against natural corruptions that occur in real-world environments. Specifically, we consider eight corruption types stemming from adversarial weather conditions, external disturbances, and internal sensor failure. We uncover that, although promising results have been progressively achieved on standard benchmarks, state-of-the-art 3D perception models are at risk of being vulnerable to corruptions. We draw key observations on the use of data representations, augmentation schemes, and training strategies, that could severely affect the model's performance. To pursue better robustness, we propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency. We hope our benchmark and approach could inspire future research in designing more robust and reliable 3D perception models. Our robustness benchmark suite is publicly available.Comment: 33 pages, 26 figures, 26 tables; code at https://github.com/ldkong1205/Robo3D project page at https://ldkong.com/Robo3

    Exploring Potential Domains of Agroecological Transformation in the United States

    Get PDF
    There is now substantial evidence that agroecology constitutes a necessary pathway towards socially just and ecologically resilient agrifood systems. In the United States, however, agroecology remains relegated to the margins of research and policy spaces. This dissertation explores three potential domains of agroecological transformation in the US. Domains of transformation are sites of contestation in which agroecology interfaces with the industrial agrifood system; these material and conceptual spaces may point to important pathways for scaling agroecology. To explore this concept, I examine formal agroecology education (Chapter 1), extension services and statewide discourses around soil health (Chapter 2), and models of farmland access not based on private property (Chapter 3). While these constitute three distinct topics, I seek to demonstrate that they are linked by similar forces that enable and constrain the extent to which these domains can be sites of agroecological transformation. First, I use case study methodology to explore the evolution of an advanced undergraduate agroecology course at the University of Vermont. I examine how course content and pedagogy align with a transformative framing of agroecology as inherently transdisciplinary, participatory, action-oriented, and political. I find that student-centered pedagogies and experiential education on farms successfully promote transformative learning whereby students shift their understanding of agrifood systems and their role(s) within them. In my second chapter, I zoom out to consider soil health discourses amongst farmers and extension professionals in Vermont. Using co-created mental models and participatory analysis, I find that a singular notion of soil health based on biological, chemical, and physical properties fails to capture the diverse ways in which farmers and extension professionals understand soil health. I advocate for a principles-based approach to soil health that includes social factors and may provide a valuable heuristic for mobilizing knowledge towards agroecology transition pathways. My third chapter, conducted in collaboration with the national non-profit organization Agrarian Trust, considers equitable farmland access. Through semi-structured interviews with 13 farmers and growers across the US, I explore both farmer motivations for engaging with alternative land access models (ALAMs) and the potential role(s) these models may play within broader transformation processes. I argue that ALAMs constitute material and conceptual ‘third spaces’ within which the private property regime is challenged and new identities and language around land ownership can emerge; as such, ALAMs may facilitate a (re)imagining of land-based social-ecological relationships. I conclude the dissertation by identifying conceptual and practical linkages across the domains explored in Chapters 1-3. I pay particular attention to processes that challenge neoliberal logics, enact plural ways of knowing, and prefigure just futures. In considering these concepts, I apply an expansive notion of pedagogy to explore how processes of teaching and (un)learning can contribute to cultivating foundational capacities for transition processes

    Early Neanderthal social and behavioural complexity during the Purfleet Interglacial: handaxes in the latest Lower Palaeolithic.

    Get PDF
    Only a handful of ‘flagship’ sites from the Purfleet Interglacial (Marine Isotope Stage 9, c. 350-290,000 years ago) have been properly examined, but the archaeological succession at the proposed type-site at Purfleet suggests a period of complexity and transition, with three techno-cultural groups represented in Britain. The first was a simple toolkit lacking handaxes (the Clactonian), and the last a more sophisticated technology presaging the coming Middle Palaeolithic (simple prepared core or proto-Levallois technology). Sandwiched between were Acheulean groups, whose handaxes comprise the great majority of the extant archaeological record of the period – these are the focus of this study. It has previously been suggested that some features of the Acheulean in the Purfleet Interglacial were chronologically restricted, particularly the co-occurrence of ficrons and cleavers. These distinctive forms may have exceeded pure functionality and were perhaps imbued with a deeper social and cultural meaning. This study supports both the previously suggested preference for narrow, pointed morphologies, and the chronologically restricted pairing of ficrons and cleavers. By drawing on a wide spatial and temporal range of sites these patterns could be identified beyond the handful of ‘flagship’ sites previously studied. Hypertrophic ‘giants’ have now also been identified as a chronologically restricted form. Greater metrical variability was found than had been anticipated, leading to the creation of two new sub-groups (IA and IB) which are tentatively suggested to represent spatial and perhaps temporal patterning. The picture in the far west of Britain remains unclear, but the possibility of different Acheulean groups operating in the Solent area, and a late survival of the Acheulean, are both suggested. Handaxes with backing and macroscopic asymmetry may represent prehensile or ergonomic considerations not commonly found on handaxes from earlier interglacial periods. It is argued that these forms anticipate similar developments in the Late Middle Palaeolithic in an example of convergent evolution

    Behavior prediction of traffic actors for intelligent vehicle using artificial intelligence techniques: A review

    Full text link
    Intelligent vehicle technology has made tremendous progress due to Artificial Intelligence (AI) techniques. Accurate behavior prediction of surrounding traffic actors is essential for the safe and secure navigation of the intelligent vehicle. Minor misbehavior of these vehicles on the busy roads may lead to an accident. Due to this, there is a need for vehicle behavior research work in today's era. This research article reviews traffic actors' behavior prediction techniques for intelligent vehicles to perceive, infer, and anticipate other vehicles' intentions and future actions. It identifies the key strategies and methods for AI, emerging trends, datasets, and ongoing research issues in these fields. As per the authors' knowledge, this is the first systematic literature review dedicated to the vehicle behavior study examining existing academic literature published by peer review venues between 2011 and 2021. A systematic review was undertaken to examine these papers, and five primary research questions have been addressed. The findings show that using sophisticated input representation that includes traffic rules and road geometry, artificial intelligence-based solutions applied to behavior prediction of traffic actors for intelligent vehicles have shown promising success, particularly in complex driving scenarios. Finally, the paper summarizes the most widely used approaches in behavior prediction of traffic actors for intelligent vehicles, which the authors believe serves as a foundation for future research in behavior prediction of surrounding traffic actors for secure and accurate intelligent vehicle navigation

    Graphical scaffolding for the learning of data wrangling APIs

    Get PDF
    In order for students across the sciences to avail themselves of modern data streams, they must first know how to wrangle data: how to reshape ill-organised, tabular data into another format, and how to do this programmatically, in languages such as Python and R. Despite the cross-departmental demand and the ubiquity of data wrangling in analytical workflows, the research on how to optimise the instruction of it has been minimal. Although data wrangling as a programming domain presents distinctive challenges - characterised by on-the-fly syntax lookup and code example integration - it also presents opportunities. One such opportunity is how tabular data structures are easily visualised. To leverage the inherent visualisability of data wrangling, this dissertation evaluates three types of graphics that could be employed as scaffolding for novices: subgoal graphics, thumbnail graphics, and parameter graphics. Using a specially built e-learning platform, this dissertation documents a multi-institutional, randomised, and controlled experiment that investigates the pedagogical effects of these. Our results indicate that the graphics are well-received, that subgoal graphics boost the completion rate, and that thumbnail graphics improve navigability within a command menu. We also obtained several non-significant results, and indications that parameter graphics are counter-productive. We will discuss these findings in the context of general scaffolding dilemmas, and how they fit into a wider research programme on data wrangling instruction

    Industry 4.0: product digital twins for remanufacturing decision-making

    Get PDF
    Currently there is a desire to reduce natural resource consumption and expand circular business principles whilst Industry 4.0 (I4.0) is regarded as the evolutionary and potentially disruptive movement of technology, automation, digitalisation, and data manipulation into the industrial sector. The remanufacturing industry is recognised as being vital to the circular economy (CE) as it extends the in-use life of products, but its synergy with I4.0 has had little attention thus far. This thesis documents the first investigating into I4.0 in remanufacturing for a CE contributing a design and demonstration of a model that optimises remanufacturing planning using data from different instances in a product’s life cycle. The initial aim of this work was to identify the I4.0 technology that would enhance the stability in remanufacturing with a view to reducing resource consumption. As the project progressed it narrowed to focus on the development of a product digital twin (DT) model to support data-driven decision making for operations planning. The model’s architecture was derived using a bottom-up approach where requirements were extracted from the identified complications in production planning and control that differentiate remanufacturing from manufacturing. Simultaneously, the benefits of enabling visibility of an asset’s through-life health were obtained using a DT as the modus operandi. A product simulator and DT prototype was designed to use Internet of Things (IoT) components, a neural network for remaining life estimations and a search algorithm for operational planning optimisation. The DT was iteratively developed using case studies to validate and examine the real opportunities that exist in deploying a business model that harnesses, and commodifies, early life product data for end-of-life processing optimisation. Findings suggest that using intelligent programming networks and algorithms, a DT can enhance decision-making if it has visibility of the product and access to reliable remanufacturing process information, whilst existing IoT components provide rudimentary “smart” capabilities, but their integration is complex, and the durability of the systems over extended product life cycles needs to be further explored
    • 

    corecore