1,748 research outputs found

    Self adaptive animation based on user perspective

    Get PDF
    In this paper we present a new character animation technique in which the animation adapts itself based on the change in the user's perspective, so that when the user moves and their point of viewing the animation changes, then the character animation adapts itself in response to that change. The resulting animation, generated in real-time, is a blend of key animations provided a priori by the animator. The blending is done with the help of efficient dual-quaternion transformation blending. The user's point of view is tracked using either computer vision techniques or a simple user-controlled input modality, such as mouse-based input. This tracked point of view is then used to suitably select the blend of animations. We show a way to author and use such animations in both virtual as well as augmented reality scenarios and demonstrate that it significantly heightens the sense of presence for the users when they interact with such self adaptive animations of virtual character

    An Inertial Device-based User Interaction with Occlusion-free Object Handling in a Handheld Augmented Reality

    Get PDF
    Augmented Reality (AR) is a technology used to merge virtual objects with real environments in real-time. In AR, the interaction which occurs between the end-user and the AR system has always been the frequently discussed topic. In addition, handheld AR is a new approach in which it delivers enriched 3D virtual objects when a user looks through the device’s video camera. One of the most accepted handheld devices nowadays is the smartphones which are equipped with powerful processors and cameras for capturing still images and video with a range of sensors capable of tracking location, orientation and motion of the user. These modern smartphones offer a sophisticated platform for implementing handheld AR applications. However, handheld display provides interface with the interaction metaphors which are developed with head-mounted display attached along and it might restrict with hardware which is inappropriate for handheld. Therefore, this paper will discuss a proposed real-time inertial device-based interaction technique for 3D object manipulation. It also explains the methods used such for selection, holding, translation and rotation. It aims to improve the limitation in 3D object manipulation when a user can hold the device with both hands without requiring the need to stretch out one hand to manipulate the 3D object. This paper will also recap of previous works in the field of AR and handheld AR. Finally, the paper provides the experimental results to offer new metaphors to manipulate the 3D objects using handheld devices

    Adaptive User Perspective Rendering for Handheld Augmented Reality

    Full text link
    Handheld Augmented Reality commonly implements some variant of magic lens rendering, which turns only a fraction of the user's real environment into AR while the rest of the environment remains unaffected. Since handheld AR devices are commonly equipped with video see-through capabilities, AR magic lens applications often suffer from spatial distortions, because the AR environment is presented from the perspective of the camera of the mobile device. Recent approaches counteract this distortion based on estimations of the user's head position, rendering the scene from the user's perspective. To this end, approaches usually apply face-tracking algorithms on the front camera of the mobile device. However, this demands high computational resources and therefore commonly affects the performance of the application beyond the already high computational load of AR applications. In this paper, we present a method to reduce the computational demands for user perspective rendering by applying lightweight optical flow tracking and an estimation of the user's motion before head tracking is started. We demonstrate the suitability of our approach for computationally limited mobile devices and we compare it to device perspective rendering, to head tracked user perspective rendering, as well as to fixed point of view user perspective rendering

    ISAR: Ein Autorensystem für Interaktive Tische

    Get PDF
    Developing augmented reality systems involves several challenges, that prevent end users and experts from non-technical domains, such as education, to experiment with this technology. In this research we introduce ISAR, an authoring system for augmented reality tabletops targeting users from non-technical domains. ISAR allows non-technical users to create their own interactive tabletop applications and experiment with the use of this technology in domains such as educations, industrial training, and medical rehabilitation.Die Entwicklung von Augmented-Reality-Systemen ist mit mehreren Herausforderungen verbunden, die Endbenutzer und Experten aus nicht-technischen Bereichen, wie z.B. dem Bildungswesen, daran hindern, mit dieser Technologie zu experimentieren. In dieser Forschung stellen wir ISAR vor, ein Autorensystem für Augmented-Reality-Tabletops, das sich an Benutzer aus nicht-technischen Bereichen richtet. ISAR ermöglicht es nicht-technischen Anwendern, ihre eigenen interaktiven Tabletop-Anwendungen zu erstellen und mit dem Einsatz dieser Technologie in Bereichen wie Bildung, industrieller Ausbildung und medizinischer Rehabilitation zu experimentieren

    Implementing Adaptive Game Difficulty Balancing in Serious Games

    Get PDF
    • …
    corecore