229 research outputs found

    Large neighbourhood search with adaptive guided ejection search for the pickup and delivery problem with time windows

    Get PDF
    An effective and fast hybrid metaheuristic is proposed for solving the pickup and delivery problem with time windows. The proposed approach combines local search, large neighbourhood search and guided ejection search in a novel way to exploit the benefits of each method. The local search component uses a novel neighbourhood operator. A streamlined implementation of large neighbourhood search is used to achieve an effective balance between intensification and diversification. The adaptive ejection chain component perturbs the solution and uses increased or decreased computation time according to the progress of the search. While the local search and large neighbourhood search focus on minimising travel distance, the adaptive ejection chain seeks to reduce the number of routes. The proposed algorithm design results in an effective and fast solution method that finds a large number of new best known solutions on a well-known benchmark data set. Experiments are also performed to analyse the benefits of the components and heuristics and their combined use in order to achieve a better understanding of how to better tackle the subject problem

    Thirty years of heterogeneous vehicle routing

    No full text
    It has been around thirty years since the heterogeneous vehicle routing problem was introduced, and significant progress has since been made on this problem and its variants. The aim of this survey paper is to classify and review the literature on heterogeneous vehicle routing problems. The paper also presents a comparative analysis of the metaheuristic algorithms that have been proposed for these problems

    A hyper-heuristic with two guidance indicators for bi-objective mixed-shift vehicle routing problem with time windows

    Get PDF
    In this paper, a Mixed-Shift Vehicle Routing Problem is proposed based on a real-life container transportation problem. In a long planning horizon of multiple shifts, transport tasks are completed satisfying the time constraints. Due to the different travel distances and time of tasks, there are two types of shifts (long shift and short shift) in this problem. The unit driver cost for long shifts is higher than that of short shifts. A mathematical model of this Mixed-Shift Vehicle Routing Problem with Time Windows (MS-VRPTW) is established in this paper, with two objectives of minimizing the total driver payment and the total travel distance. Due to the large scale and nonlinear constraints, the exact search showed is not suitable to MS-VRPTW. An initial solution construction heuristic (EBIH) and a selective perturbation Hyper-Heuristic (GIHH) are thus developed. In GIHH, five heuristics with different extents of perturbation at the low level are adaptively selected by a high level selection scheme with the Hill Climbing acceptance criterion. Two guidance indicators are devised at the high level to adaptively adjust the selection of the low level heuristics for this bi-objective problem. The two indicators estimate the objective value improvement and the improvement direction over the Pareto Front, respectively. To evaluate the generality of the proposed algorithms, a set of benchmark instances with various features is extracted from real-life historical datasets. The experiment results show that GIHH significantly improves the quality of the final Pareto Solution Set, outperforming the state-of-the-art algorithms for similar problems. Its application on VRPTW also obtains promising results

    The multi-vehicle profitable pick up and delivery routing problem with uncertain travel times

    Get PDF
    Abstract This paper addresses a variant of the known selective pickup and delivery problem with time windows. In this problem, a fleet composed of several vehicles with a given capacity should satisfy a set of customers requests consisting in transporting goods from a supplier (pickup location) to a customer (delivery location). The selective aspect consists in choosing the customers to be served on the basis of the profit collected for the service. Motivated by urban settings, wherein road congestion is an important issue, in this paper, we address the profitable pickup and delivery problem with time windows with uncertain travel times. The problem under this assumption, becomes much more involved. The goal is to find the solution that maximizes the net profit, expressed as the difference between the collected revenue, the route cost and the cost associated to the violation the time windows. This study introduces the problem and develops a solution approach to solve it. Very preliminary tests are performed in order to show the efficiency of developed method to cope with the problem at hand

    Vehicle Routing Problem with Time Windows: An Evolutionary Algorithmic Approach

    Get PDF
    The Vehicle Routing Problem with Time Windows (VRPTW) is an important problem in logistics, which is an extension of well known Vehicle Routing Problem (VRP), with a central depot. The Objective is to design an optimal set of routes for serving a number of customers without violating the customer’s time window constraints and vehicle capacity constraint. It has received considerable attention in recent years. This paper reviews the research on Evolutionary Algorithms for VRPTW. The main types of evolutionary algorithms for the VRPTW are Genetic Algorithms and Evolutionary Strategies which may also be described as Evolutionary metaheuristics to distinguish them from other metaheuristics. Along with these evolutionary metaheuristics, this paper reviews heuristic search methods that hybridize ideas of evolutionary algorithms with some other search technique, such as tabu search, guided local search, route construction heuristics, ejection chain approach, adaptive large neighborhood search, variable neighborhood search and hierarchal tournament selection. In addition to the basic features of each method, experimental results for the 56 benchmark problem with 100 customers of Solomon (1987) and Gehring and Homberger (1999) are presented and analyzed

    A new three phase method (SDP method) for the multi-objective vehicle routing problem with simultaneous delivery and pickup (VRPSDP)

    Get PDF
    Transportation service operators are witnessing a growing demand for bi-directional movement of goods. Given this, the following thesis considers an extension to the vehicle routing problem (VRP) known as the delivery and pickup transportation problem (DPP), where delivery and pickup demands may occupy the same route. The problem is formulated here as the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), which requires the concurrent service of the demands at the customer location. This formulation provides the greatest opportunity for cost savings for both the service provider and recipient. The aims of this research are to propose a new theoretical design to solve the multi-objective VRPSDP, provide software support for the suggested design and validate the method through a set of experiments. A new real-life based multi-objective VRPSDP is studied here, which requires the minimisation of the often conflicting objectives: operated vehicle fleet size, total routing distance and the maximum variation between route distances (workload variation). The former two objectives are commonly encountered in the domain and the latter is introduced here because it is essential for real-life routing problems. The VRPSDP is defined as a hard combinatorial optimisation problem, therefore an approximation method, Simultaneous Delivery and Pickup method (SDPmethod) is proposed to solve it. The SDPmethod consists of three phases. The first phase constructs a set of diverse partial solutions, where one is expected to form part of the near-optimal solution. The second phase determines assignment possibilities for each sub-problem. The third phase solves the sub-problems using a parallel genetic algorithm. The suggested genetic algorithm is improved by the introduction of a set of tools: genetic operator switching mechanism via diversity thresholds, accuracy analysis tool and a new fitness evaluation mechanism. This three phase method is proposed to address the shortcoming that exists in the domain, where an initial solution is built only then to be completely dismantled and redesigned in the optimisation phase. In addition, a new routing heuristic, RouteAlg, is proposed to solve the VRPSDP sub-problem, the travelling salesman problem with simultaneous delivery and pickup (TSPSDP). The experimental studies are conducted using the well known benchmark Salhi and Nagy (1999) test problems, where the SDPmethod and RouteAlg solutions are compared with the prominent works in the VRPSDP domain. The SDPmethod has demonstrated to be an effective method for solving the multi-objective VRPSDP and the RouteAlg for the TSPSDP

    A flexible metaheuristic framework for solving rich vehicle routing problems

    Get PDF
    Route planning is one of the most studied research topics in the operations research area. While the standard vehicle routing problem (VRP) is the classical problem formulation, additional requirements arising from practical scenarios such as time windows or vehicle compartments are covered in a wide range of so-called rich VRPs. Many solution algorithms for various VRP variants have been developed over time as well, especially within the class of so-called metaheuristics. In practice, routing software must be tailored to the business rules and planning problems of a specific company to provide valuable decision support. This also concerns the embedded solution methods of such decision support systems. Yet, publications dealing with flexibility and customization of VRP heuristics are rare. To fill this gap this thesis describes the design of a flexible framework to facilitate and accelerate the development of custom metaheuristics for the solution of a broad range of rich VRPs. The first part of the thesis provides background information to the reader on the field of vehicle routing problems and on metaheuristic solution methods - the most common and widely-used solution methods to solve VRPs. Specifically, emphasis is put on methods based on local search (for intensification of the search) and large neighborhood search (for diversification of the search), which are combined to hybrid methods and which are the foundation of the proposed framework. Then, the main part elaborates on the concepts and the design of the metaheuristic VRP framework. The framework fulfills requirements of flexibility, simplicity, accuracy, and speed, enforcing the structuring and standardization of the development process and enabling the reuse of code. Essentially, it provides a library of well-known and accepted heuristics for the standard VRP together with a set of mechanisms to adapt these heuristics to specific VRPs. Heuristics and adaptation mechanisms such as templates for user-definable checking functions are explained on a pseudocode level first, and the most relevant classes of a reference implementation using the Microsoft .NET framework are presented afterwards. Finally, the third part of the thesis demonstrates the use of the framework for developing problem-specific solution methods by exemplifying specific customizations for five rich VRPs with diverse characteristics, namely the VRP with time windows, the VRP with compartments, the split delivery VRP, the periodic VRP, and the truck and trailer routing problem. These adaptations refer to data structures and neighborhood search methods and can serve as a source of inspiration to the reader when designing algorithms for new, so far unstudied VRPs. Computational results are presented to show the effectiveness and efficiency of the proposed framework and methods, which are competitive with current state-of-the-art solvers of the literature. Special attention is given to the overall robustness of heuristics, which is an important aspect for practical application

    Application of an Open Source Spreadsheet Solver in Single Depot Routing Problem

    Get PDF
    The VRP has been broadly developed with additional feature such as deliveries, selective pickups time windows. This paper presents the application of an open source spreadsheet solver in single depot routing problem. This study focuses on Fast Moving Consumer Goods (FMCG) Company as a case study. The objective of this research is to minimize the distance travel. This research begins by collecting data from a respective FMCG Company. An FMCG company based in Jakarta, Indonesia provides drinking water packaged in the gallon. This FMCG Company has two distributions characteristic. Head office distribution was used in this case study due to highest internally rejected by the company such as un-routed order, no visit, not enough time to visit and transportation issue. Based on computational results, overall solutions to delivered 214 gallons to 26 customers having total distance traveled 56.76 km, total driving time 2 hour and 49 minutes, the total driver working time 7 hours and 57 minutes. Total savings of distances traveled between current route and the proposed solutions using open source spreadsheet solver is 7.25 km. As a result, by using open source spreadsheet solver in single depot routing problem can be implemented in FMCG Company
    corecore