1,044 research outputs found

    A model-based framework assisting the design of vapor-liquid equilibrium experimental plans

    Get PDF
    In this paper we propose a framework for Model-based Sequential Optimal Design of Experiments to assist experimenters involved in Vapor-Liquid equilibrium characterization studies to systematically construct thermodynamically consistent models. The approach uses an initial continuous optimal design obtained via semidefinite programming, and then iterates between two stages (i) model fitting using the information available; and (ii) identification of the next experiment, so that the information content in data is maximized. The procedure stops when the number of experiments reaches the maximum for the experimental program or the dissimilarity between the parameter estimates during two consecutive iterations is below a given threshold. This methodology is exemplified with the D-optimal design of isobaric experiments, for characterizing binary mixtures using the NRTL and UNIQUAC thermodynamic models for liquid phase. Significant reductions of the confidence regions for the parameters are achieved compared with experimental plans where the observations are uniformly distributed over the domain

    Rank-Two Beamforming and Power Allocation in Multicasting Relay Networks

    Full text link
    In this paper, we propose a novel single-group multicasting relay beamforming scheme. We assume a source that transmits common messages via multiple amplify-and-forward relays to multiple destinations. To increase the number of degrees of freedom in the beamforming design, the relays process two received signals jointly and transmit the Alamouti space-time block code over two different beams. Furthermore, in contrast to the existing relay multicasting scheme of the literature, we take into account the direct links from the source to the destinations. We aim to maximize the lowest received quality-of-service by choosing the proper relay weights and the ideal distribution of the power resources in the network. To solve the corresponding optimization problem, we propose an iterative algorithm which solves sequences of convex approximations of the original non-convex optimization problem. Simulation results demonstrate significant performance improvements of the proposed methods as compared with the existing relay multicasting scheme of the literature and an algorithm based on the popular semidefinite relaxation technique
    • …
    corecore