133 research outputs found

    A dynamic neighborhood learning-based gravitational search algorithm

    Get PDF
    Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named Kbest, which stores those superior agents after fitness sorting in each iteration. Since the global property of Kbest remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the Kbest model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA

    Model Reference Adaptive Control based on a Simplified Recurrent Neural Network Trained by Gbest-Guided Gravitational Search Algorithm to Control Nonlinear Systems

    Get PDF
    This paper presents an intelligent Model Reference Adaptive Control (MRAC) strategy based on a Simplified Recurrent Neural Network (SRNN) for nonlinear dynamical systems. This network is an enhanced version of a previously reported modified recurrent network (MRN). More precisely, the enhancement in the SRNN structure was realized by employing unity weight values between the context and the hidden layers in the original MRN structure. The newly developed Gbest-guided Gravitational Search Algorithm (GGSA) was adopted for optimizing the parameters of the SRNN structure. To show the efficiency of the proposed SRNN-based MRAC, three different nonlinear systems were considered as case studies, including complex difference equations and the water bath temperature control system. From an extensive set of evaluation tests, which includes a control performance test, a disturbance rejection test, and a generalization test, the proposed SRNN-based MRAC system demonstrated its effectiveness with regards to precise control and good robustness and generalization abilities. Furthermore, compared to other Neural Network (NN) structures, including the original MRN and the Multilayer Perceptron (MLP) NN, the SRNN structure attained superior results due to the utilization of a reduced set of parameters. From another study, the GGSA accomplished the best optimization results in terms of control precision and convergence speed compared to the original Gravitational Search Algorithm (GSA)

    Hybrid Evolutionary Computing Assisted Irregular-Shaped Patch Antenna Design for Wide Band Applications

    Get PDF
    A novel optimization concept for modeling irregular-shaped patch antenna with high bandwidth and efficient radiation attributes is proposed in this paper, along with the ability to accomplish the design at a reduced computational and cost burden. A revolutionary computing perception is established with Gravitational Search Algorithm (GSA) and Quantum Based Delta Particle Swarm Optimization (QPSO), now known as GSA-QPSO. The suggested model employed the GSA-QPSO algorithm strategically interfaced with a high-frequency structure simulator (HFSS) software through a Microsoft Visual Basic script to enhance irregular-shaped antenna design while maintaining wide bandwidth with suitable radiation efficiency over the target bandwidth region. The optimally designed microstrip patch antenna is fabricated on an FR-4 substrate with a surface area of 30×30×1.6 mm 3 . The evaluated outcome shows 96 % supreme radiation efficacy at 2.4 GHz whereas overall effectiveness is above 84% over the entire frequency range, with a nearly omnidirectional radiation pattern. In terms of impedance bandwidth, the suggested antenna offers 126.6 % over the operational frequency range from 2.34 GHz to 10.44 GHz. Fabrication and measurement results are also used to validate the simulated results. It exhibits the proficiency of the offered antenna design to be used for real-world wideband (WB) communication drives

    Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima

    Get PDF
    Copyright @ Elsevier Inc. All rights reserved.Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each particle explores the promising regions where it resides under the composite forces produced by the “near-neighbor attractor” and “near-neighbor repeller”, which are selected from the set of memorized personal best positions and the current swarm based on the principles of “superior-and-nearer” and “inferior-and-nearer”, respectively. These two forces pull and push a particle to search for the nearby optimum. Hence, particles can simultaneously locate multiple optima quickly and precisely. Experiments are carried out to investigate the performance of NN-FPSO in comparison with a number of state-of-the-art PSO algorithms for locating multiple optima over a series of multimodal benchmark test functions. The experimental results indicate that the proposed NN-FPSO algorithm can efficiently locate multiple optima in multimodal fitness landscapes.This work was supported in part by the Key Program of National Natural Science Foundation (NNSF) of China under Grant 70931001, Grant 70771021, and Grant 70721001, the National Natural Science Foundation (NNSF) of China for Youth under Grant 61004121, Grant 70771021, the Science Fund for Creative Research Group of NNSF of China under Grant 60821063, the PhD Programs Foundation of Ministry of Education of China under Grant 200801450008, and in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    A Survey on Particle Swarm Optimization for Association Rule Mining

    Get PDF
    Association rule mining (ARM) is one of the core techniques of data mining to discover potentially valuable association relationships from mixed datasets. In the current research, various heuristic algorithms have been introduced into ARM to address the high computation time of traditional ARM. Although a more detailed review of the heuristic algorithms based on ARM is available, this paper differs from the existing reviews in that we expected it to provide a more comprehensive and multi-faceted survey of emerging research, which could provide a reference for researchers in the field to help them understand the state-of-the-art PSO-based ARM algorithms. In this paper, we review the existing research results. Heuristic algorithms for ARM were divided into three main groups, including biologically inspired, physically inspired, and other algorithms. Additionally, different types of ARM and their evaluation metrics are described in this paper, and the current status of the improvement in PSO algorithms is discussed in stages, including swarm initialization, algorithm parameter optimization, optimal particle update, and velocity and position updates. Furthermore, we discuss the applications of PSO-based ARM algorithms and propose further research directions by exploring the existing problems.publishedVersio

    Gravitational-Search Algorithm for Optimal Controllers Design of Doubly-fed Induction Generator

    Get PDF
    Recently, the Gravitational-Search Algorithm (GSA) has been presented as a promising physics-inspired stochastic global optimization technique. It takes its derivation and features from laws of gravitation. This paper applies the GSA to design optimal controllers of a nonlinear system consisting of a doubly-fed induction generator (DFIG) driven by a wind turbine. Both the active and the reactive power are controlled and processed through a back-to-back converter. The active power control loop consists of two cascaded proportional integral (PI) controllers. Another PI controller is used to set the q-component of the rotor voltage by compensating the generated reactive power. The GSA is used to simultaneously tune the parameters of the three PI controllers. A time-weighted absolute error (ITAE) is used in the objective function to stabilize the system and increase its damping when subjected to different disturbances. Simulation results will demonstrate that the optimal GSA-based coordinated controllers can efficiently damp system oscillations under severe disturbances. Moreover, simulation results will show that the designed optimal controllers obtained using the GSA perform better than the optimal controllers obtained using two commonly used global optimization techniques, which are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system
    corecore