366 research outputs found

    Effect of obesity on knee joint biomechanics during gait in young adults

    Get PDF
    This article is MacLean, K. F. E., Callaghan, J. P., & Maly, M. R. (2016). Effect of obesity on knee joint biomechanics during gait in young adults. Cogent Medicine, 3(1). https://doi.org/10.1080/2331205X.2016.1173778While there are many comorbidities associated with obesity, one of the more poorly understood is knee osteoarthritis through obesity. The purpose of this study was to compare the kinematics and kinetics of gait and cumulative knee adductor load, which represents the sum of repetitive exposures to medial knee loading during daily activity, between young obese adults with young, healthy-weight adults. Eight obese and eight healthy-weight young adults participated. Data from a three-dimensional motion capture system and a synchronized floor-mounted force plate were collected during gait trials. Participants wore accelerometers to determine step counts for seven consecutive days. Dependent t-tests were used to identify differences in gait kinematics, kinetics and cumulative knee adductor load between groups. Compared to the healthy-weight participants, obese young adults demonstrated a slower walking speed, greater stance duration, less knee flexion at heel contact, greater knee adduction in early stance and less knee abduction at terminal stance (p < 0.05). The obese young adults had a greater external knee extension moment (p < 0.05) and external rotation moment (p < 0.05) in early stance. The obese group had a greater cumulative knee adductor load. These results provide insight into a potential pathway by which obesity predisposes a healthy young adult for knee osteoarthritis.This research is supported by Canada Research Chairs, Canadian Institutes of Health Research, and Natural Sciences and Engineering Research Council of Canad

    The “broken escalator” phenomenon: Vestibular dizziness interferes with locomotor adaptation

    Get PDF
    BACKGROUND: Although vestibular lesions degrade postural control we do not know the relative contributions of the magnitude of the vestibular loss and subjective vestibular symptoms to locomotor adaptation. OBJECTIVE: To study how dizzy symptoms interfere with adaptive locomotor learning. METHODS: We examined patients with contrasting peripheral vestibular deficits, vestibular neuritis in the chronic stable phase (n = 20) and strongly symptomatic unilateral Meniere’s disease (n = 15), compared to age-matched healthy controls (n = 15). We measured locomotor adaptive learning using the “broken escalator” aftereffect, simulated on a motorised moving sled. RESULTS: Patients with Meniere’s disease had an enhanced “broken escalator” postural aftereffect. More generally, the size of the locomotor aftereffect was related to how symptomatic patients were across both groups. Contrastingly, the degree of peripheral vestibular loss was not correlated with symptom load or locomotor aftereffect size. During the MOVING trials, both patient groups had larger levels of instability (trunk sway) and reduced adaptation than normal controls. CONCLUSION: Dizziness symptoms influence locomotor adaptation and its subsequent expression through motor aftereffects. Given that the unsteadiness experienced during the “broken escalator” paradigm is internally driven, the enhanced aftereffect found represents a new type of self-generated postural challenge for vestibular/unsteady patients

    Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control

    Full text link
    Abstract Background Controllers for assistive robotic devices can be divided into two main categories: controllers using neural signals and controllers using mechanically intrinsic signals. Both approaches are prevalent in research devices, but a direct comparison between the two could provide insight into their relative advantages and disadvantages. We studied subjects walking with robotic ankle exoskeletons using two different control modes: dynamic gain proportional myoelectric control based on soleus muscle activity (neural signal), and timing-based mechanically intrinsic control based on gait events (mechanically intrinsic signal). We hypothesized that subjects would have different measures of metabolic work rate between the two controllers as we predicted subjects would use each controller in a unique manner due to one being dependent on muscle recruitment and the other not. Methods The two controllers had the same average actuation signal as we used the control signals from walking with the myoelectric controller to shape the mechanically intrinsic control signal. The difference being the myoelectric controller allowed step-to-step variation in the actuation signals controlled by the user’s soleus muscle recruitment while the timing-based controller had the same actuation signal with each step regardless of muscle recruitment. Results We observed no statistically significant difference in metabolic work rate between the two controllers. Subjects walked with 11% less soleus activity during mid and late stance and significantly less peak soleus recruitment when using the timing-based controller than when using the myoelectric controller. While walking with the myoelectric controller, subjects walked with significantly higher average positive and negative total ankle power compared to walking with the timing-based controller. Conclusions We interpret the reduced ankle power and muscle activity with the timing-based controller relative to the myoelectric controller to result from greater slacking effects. Subjects were able to be less engaged on a muscle level when using a controller driven by mechanically intrinsic signals than when using a controller driven by neural signals, but this had no affect on their metabolic work rate. These results suggest that the type of controller (neural vs. mechanical) is likely to affect how individuals use robotic exoskeletons for therapeutic rehabilitation or human performance augmentation.https://deepblue.lib.umich.edu/bitstream/2027.42/143850/1/12984_2018_Article_379.pd

    Integration of aerial and terrestrial locomotion modes in a bioinspired robotic system

    Get PDF
    In robotics, locomotion is a fundamental task for the development of high-level activities such as navigation. For a robotic system, the challenge of evading environmental obstacles depends both on its physical capabilities and on the strategies followed to achieve it. Thus, a robot with the ability to develop several modes of locomotion (walking, flying or swimming) has a greater probability of success in achieving its goal than a robot that develops only one. In nature, Hymenoptera insects use terrestrial and aerial modes of locomotion to carry out their activities. Mimicry the physical capabilities of these insects opens the possibility of improvements in the area of robotic locomotion. Therefore, this work seeks to generate a bio-inspired robotic system that integrates the terrestrial and aerial modes of locomotion. The methodology used in this research project has considered the anatomical study and characterization of Hymenoptera insects locomotion, the proposal of conceptual models that integrate terrestrial and aerial modes locomotion, the construction of a physical platform and experimental testing of the system. In addition, a gait generation approach based on an artificial nervous system of coupled nonlinear oscillators has been proposed. This approach has resulted in the generation of a coherent and functional gait pattern that, in combination with the flight capabilities of the system, has constituted an aero-terrestrial robot. The results obtained in this work include the construction of a bioinspired physical platform, the generation of the gait process using an artificial nervous system and the experimental tests on the integration of aero-terrestrial locomotion.Conacyt - Becario Naciona

    Development of a Quadruped Robot and Parameterized Stair-Climbing Behavior

    Get PDF
    Stair-climbing is a difficult task for mobile robots to accomplish, particularly for legged robots. While quadruped robots have previously demonstrated the ability to climb stairs, none have so far been capable of climbing stairs of variable height while carrying all required sensors, controllers, and power sources on-board. The goal of this thesis was the development of a self-contained quadruped robot capable of detecting, classifying, and climbing stairs of any height within a specified range. The design process for this robot is described, including the development of the joint, leg, and body configuration, the design and selection of components, and both dynamic and finite element analyses performed to verify the design. A parameterized stair-climbing gait is then developed, which is adaptable to any stair height of known width and height. This behavior is then implemented on the previously discussed quadruped robot, which then demonstrates the capability to climb three different stair variations with no configuration change

    Age Related Changes in Balance and Gait

    Get PDF
    abstract: Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21 young (21-35 years) and 22 elderly (50-75 years) healthy subjects while they performed three different tasks: quiet standing, dynamic weight shifts, and over ground walking. During the quiet standing task, the subjects stood with their eyes open and eyes closed. When performing dynamic weight shifts task, subjects shifted their Center of Pressure (CoP) from the center target to outward targets and vice versa while following real-time feedback of their CoP. For over ground walking tasks, subjects performed Timed Up and Go test, tandem walking, and regular walking at their self-selected speed. Various quantitative balance and gait measures were obtained to evaluate the above respective balance and walking tasks. Total excursion, sway area, and mean frequency of CoP during quiet standing were found to be the most reliable and showed significant increase with age and absence of visual input. During dynamic shifts, elderly subjects exhibited higher initiation time, initiation path length, movement time, movement path length, and inaccuracy indicating deterioration in performance. Furthermore, the elderly walked with a shorter stride length, increased stride variability, with a greater turn and turn-to-sit duration. Significant correlations were also observed between measures derived from the different balance and gait tasks. Thus, it can be concluded that aging deteriorates the postural control system affecting static and dynamic balance and some of the alterations in CoP and gait measures may be considered as protective mechanisms to prevent loss of balance.Dissertation/ThesisM.S. Bioengineering 201

    Doctor of Philosophy

    Get PDF
    dissertationThis thesis analyzed biped stability through a qualitative likelihood of falling and quantitative Potential to Fall (PF) analysis. Both analyses were applied to walking and skiing to better understand behaviors across a wider spectrum of bipedal gaits. For both walking and skiing, two types of locomotion were analyzed. Walking studies compared normal locomotion (gait) to an unexpected slip. Skiing studies compared wedge style locomotion (more common to beginning and intermediate skiers) to parallel style locomotion (more common to advanced and expert skiers). Two mediums of data collection were used. A motion capture laboratory with stereographic cameras and force plates were used for walking studies, and instrumented insoles, capable of force and inertial measurement, were used for skiing studies. Both kinematics and kinetics were used to evaluate the likelihood of falling. The PF metric, based on root mean squared error, was used to quantify the likelihood of falling for multiple subjects both in walking and skiing. PF was based on foot kinematics for walking and skiing studies. PF also included center of pressure for skiing studies. The PF was lower for normal gaits in walking studies and wedge style locomotion for skiing studies

    An admittance shaping controller for exoskeleton assistance of the lower extremities

    Full text link
    We present a method for lower-limb exoskeleton control that defines assistance as a desired dynamic response for the human leg. Wearing the exoskeleton can be seen as replacing the leg's natural admittance with the equivalent admittance of the coupled system. The control goal is to make the leg obey an admittance model defined by target values of natural frequency, peak magnitude and zero-frequency response. No estimation of muscle torques or motion intent is necessary. Instead, the controller scales up the coupled system's sensitivity transfer function by means of a compensator employing positive feedback. This approach increases the leg's mobility and makes the exoskeleton an active device capable of performing net positive work on the limb. Although positive feedback is usually considered destabilizing, here performance and robust stability are successfully achieved through a constrained optimization that maximizes the system's gain margins while ensuring the desired location of its dominant poles
    corecore