3,217 research outputs found

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Modelling of a Flexible Manoeuvring System Using ANFIS Techniques

    Get PDF
    The increased utilization of flexible structure systems, such as flexible manipulators and flexible aircraft in various applications, has been motivated by the requirements of industrial automation in recent years. Robust optimal control of flexible structures with active feedback techniques requires accurate models of the base structure, and knowledge of uncertainties of these models. Such information may not be easy to acquire for certain systems. An adaptive Neuro-Fuzzy inference Systems (ANFIS) use the learning ability of neural networks to adjust the membership function parameters in a fuzzy inference system. Hence, modelling using ANFIS is preferred in such applications. This paper discusses modelling of a nonlinear flexible system namely a twin rotor multi-input multi-output system using ANFIS techniques. Pitch and yaw motions are modelled and tested by model validation techniques. The obtained results indicate that ANFIS modelling is powerful to facilitate modelling of complex systems associated with nonlinearity and uncertainty

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    Design of Power System Stabilizer

    Get PDF
    A power system stabilizer (PSS) installed in the excitation system of the synchronous generator improves the small-signal power system stability by damping out low frequency oscillations in the power system. It does that by providing supplementary perturbation signals in a feedback path to the alternator excitation system. In our project we review different conventional PSS design (CPSS) techniques along with modern adaptive neuro-fuzzy design techniques. We adapt a linearized single-machine infinite bus model for design and simulation of the CPSS and the voltage regulator (AVR). We use 3 different input signals in the feedback (PSS) path namely, speed variation(w), Electrical Power (Pe), and integral of accelerating power (Pe*w), and review the results in each case. For simulations, we use three different linear design techniques, namely, root-locus design, frequency-response design, and pole placement design; and the preferred non-linear design technique is the adaptive neuro-fuzzy based controller design. The MATLAB package with Control System Toolbox and SIMULINK is used for the design and simulations

    Neural Systems for solving the inverse problem of recovering the Primary Signal Waveform in potential transformers

    Get PDF
    The inverse problem of recovering the potential transformer primary signal waveform using secondary signal waveform and information about the secondary load is solved here via two inverse neural network models. The first model uses two recurrent neural networks trained in an off-line mode. The second model is designed with the use a Dynamic Evolving Neural-Fuzzy Interface System (DENFIS) and suited for on-line application and integration into existing protection algorithms as a parallel module. It has the ability of learning and adjusting its structure in an on-line mode to reflect changes in the environment. The model is suited for real time applications and improvement of protection relay operation. The two models perform better than any existing and published models so far and are useful not only for the reconstruction of the primary signal, but for predicting the signal waveform for some time steps ahead and thus for estimating the drifts in the incoming signals and events

    A Heuristic Dynamic Programming Based Power System Stabilizer for a Turbogenerator in a Single Machine Power System

    Get PDF
    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, a novel design of power system stabilizer (PSS) based on heuristic dynamic programming (HDP) is proposed in this paper. HDP combining the concepts of dynamic programming and reinforcement learning is used in the design of a nonlinear optimal power system stabilizer. The proposed HDP based PSS is evaluated against the conventional power system stabilizer and indirect adaptive neurocontrol based PSS under small and large disturbances in a single machine infinite bus power system setup. Results are presented to show the effectiveness of this new technique
    corecore