125 research outputs found

    Adaptive Neural Fault-Tolerant Control of a 3-DOF Model Helicopter System

    Full text link

    Research on optimal control, stabilization and computational algorithms for aerospace applications

    Get PDF
    The research carried out in the areas of optimal control and estimation theory and its applications under this grant is reviewed. A listing of the 257 publications that document the research results is presented

    Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning

    Get PDF
    In this paper, we investigate fuzzy neural network (FNN) control using impedance learning for coordinated multiple constrained robots carrying a common object in the presence of the unknown robotic dynamics and the unknown environment with which the robot comes into contact. First, an FNN learning algorithm is developed to identify the unknown plant model. Second, impedance learning is introduced to regulate the control input in order to improve the environment-robot interaction, and the robot can track the desired trajectory generated by impedance learning. Third, in light of the condition requiring the robot to move in a finite space or to move at a limited velocity in a finite space, the algorithm based on the position constraint and the velocity constraint are proposed, respectively. To guarantee the position constraint and the velocity constraint, an integral barrier Lyapunov function is introduced to avoid the violation of the constraint. According to Lyapunov's stability theory, it can be proved that the tracking errors are uniformly bounded ultimately. At last, some simulation examples are carried out to verify the effectiveness of the designed control

    Modeling and Robust Control of Flying Robots Using Intelligent Approaches Modélisation et commande robuste des robots volants en utilisant des approches intelligentes

    Get PDF
    This thesis aims to modeling and robust controlling of a flying robot of quadrotor type. Where we focused in this thesis on quadrotor unmanned Aerial Vehicle (QUAV). Intelligent nonlinear controllers and intelligent fractional-order nonlinear controllers are designed to control. The QUAV system is considered as MIMO large-scale system that can be divided on six interconnected single-input–single-output (SISO) subsystems, which define one DOF, i.e., three-angle subsystems with three position subsystems. In addition, nonlinear models is considered and assumed to suffer from the incidence of parameter uncertainty. Every parameters such as mass, inertia of the system are assumed completely unknown and change over time without prior information. Next, basing on nonlinear, Fractional-Order nonlinear and the intelligent adaptive approximate techniques a control law is established for all subsystems. The stability is performed by Lyapunov method and getting the desired output with respect to the desired input. The modeling and control is done using MATLAB/Simulink. At the end, the simulation tests are performed to that, the designed controller is able to maintain best performance of the QUAV even in the presence of unknown dynamics, parametric uncertainties and external disturbance

    Robust model-based fault estimation and fault-tolerant control : towards an integration

    Get PDF
    To maintain robustly acceptable system performance, fault estimation (FE) is adopted to reconstruct fault signals and a fault-tolerant control (FTC) controller is employed to compensate for the fault effects. The inevitably existing system and estimation uncertainties result in the so-called bi-directional robustness interactions defined in this work between the FE and FTC functions, which gives rise to an important and challenging yet open integrated FE/FTC design problem concerned in this thesis. An example of fault-tolerant wind turbine pitch control is provided as a practical motivation for integrated FE/FTC design.To achieve the integrated FE/FTC design for linear systems, two strategies are proposed. A H∞ optimization based approach is first proposed for linear systems with differentiable matched faults, using augmented state unknown input observer FE and adaptive sliding mode FTC. The integrated design is converted into an observer-based robust control problem solved via a single-step linear matrix inequality formulation.With the purpose of an integrated design with more freedom and also applicable for a range of general fault scenarios, a decoupling approach is further proposed. This approach can estimate and compensate unmatched non-differentiable faults and perturbations by combined adaptive sliding mode augmented state unknown input observer and backstepping FTC controller. The observer structure renders a recovery of the Separation Principle and allows great freedom for the FE/FTC designs.Integrated FE/FTC design strategies are also developed for Takagi-Sugeno fuzzy modelling nonlinear systems, Lipschitz nonlinear systems, and large-scale interconnected systems, based on extensions of the H∞ optimization approach for linear systems.Tutorial examples are used to illustrate the design strategies for each approach. Physical systems, a 3-DOF (degree-of-freedom) helicopter and a 3-machine power system, are used to provide further evaluation of the proposed integrated FE/FTC strategies. Future research on this subject is also outlined

    Event-Triggered Multi-Lane Fusion Control for 2-D Vehicle Platoon Systems with Distance Constraints

    Get PDF
    This paper investigates the event-triggered fixedtime multi-lane fusion control for vehicle platoon systems with distance keeping constraints where the vehicles are spread in multiple lanes. To realize the fusion of vehicles in different lanes, the vehicle platoon systems are firstly constructed with respect to a two-dimensional (2-D) plane. In case of the collision and loss of effective communication, the distance constraints for each vehicle are guaranteed by a barrier function-based control strategy. In contrast to the existing results regarding the command filter techniques, the proposed distance keeping controller can constrain the distance tracking error directly and the error generated by the command filter is coped with by adaptive fuzzy control technique. Moreover, to offset the impacts of the unknown system dynamics and the external disturbances, an unknown input reconstruction method with asymptotic convergence is developed by utilizing the interval observer technique. Finally, two relative threshold triggering mechanisms are utilized in the proposed fixed-time multi-lane fusion controller design so as to reduce the communication burden. The corresponding simulation results also verify the effectiveness of the proposed strategy

    A passive fault-tolerant control strategy for a non-linear system: An application to the two tank conical non-interacting level control system

    Get PDF
    In practical engineering systems, unknown actuator, sensor or system component faults frequently occur, which results from component and interconnection failures, degrade control performance, system stability, and profitability, and even arise hazardous situation. To avoid abnormal activity like faults and maintain system control performance subject to faults occurring into the system, the Fault-tolerant Control (FTC) is a realistic approach to address the unwanted situation. The two-tank conical system is widely used in chemical and food process industries because of its greater advantages. The non-interacting configuration of the two-tank conical system is highly nonlinear due to its shape and varying area of the tank thought the height of the tank, as a consequence level control of this system is extremely difficult. The paper attributes to design a Passive Fault-tolerant Control Strategy (PFTCS) for a Two-tank conical Non Interacting Level Control System (TTCNILCS) subject to the major system (leak), sensor, and actuator faults with external process disturbances. PFTC will increase system control performance and system stability acceptable level in the presence of sensor, system, and actuator faults. The simulation results demonstrate the proposed PFTC strategy has definite fault tolerant ability against the system and actuator faults also it has good disturbance rejection capability. To verify the efficacy of the proposed PFTC strategy Mean Square Error (MSE) and Root Mean Square Error (RMSE) Integral Absolute Error (IAE) indices are used

    Fault tolerant control of uncertain dynamical systems using interval virtual actuators

    Get PDF
    This is the peer reviewed version of the following article: Rotondo D, Cristofaro A, Johansen TA. Fault tolerant control of uncertain dynamical systems using interval virtual actuators. Int J Robust Nonlinear Control. 2018;28:611–624, which has been published in final form at https://doi.org/10.1002/rnc.3888. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.In this paper, a model reference fault tolerant control strategy based on a reconfiguration of the reference model, with the addition of a virtual actuator block, is presented for uncertain systems affected by disturbances and sensor noise. In particular, this paper (1) extends the reference model approach to the use of interval state observers, by considering an error feedback controller, which uses the estimated bounds for the error between the real state and the reference state, and (2) extends the virtual actuator approach to the use of interval observers, which means that the virtual actuator is added to the control loop to preserve the nonnegativity of the interval estimation errors and the boundedness of the involved signals, in spite of the fault occurrence. In both cases, the conditions to assure the desired operation of the control loop are provided in terms of linear matrix inequalities. An illustrative example is used to show the main characteristics of the proposed approach.Peer ReviewedPostprint (author's final draft
    corecore