673 research outputs found

    A Survey of Decentralized Adaptive Control

    Get PDF

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    The extension and exploitation of the inventory and order based production control system archetype from 1982 to 2015

    Get PDF
    In 1994, through classic control theory, John, Naim and Towill developed the ‘Automatic Pipeline, Inventory and Order-based Production Control System’ (APIOBPCS) which extended the original IOBPCS archetype developed by Towill in 1982 ─ well-recognised as a base framework for a production planning and control system. Due to the prevalence of the two original models in the last three decades in the academic and industrial communities, this paper aims to systematically review how the IOBPCS archetypes have been adopted, exploited and adapted to study the dynamics of individual production planning and control systems and whole supply chains. Using various databases such as Scopus, Web of Science, Google Scholar (111 papers), we found that the IOBPCS archetypes have been studied regarding the a) modification of four inherent policies related to forecasting, inventory, lead-time and pipeline to create a ‘family’ of models, b) adoption of the IOBPCS ‘family’ to reduce supply chain dynamics, and in particular bullwhip, c) extension of the IOBPCS family to represent different supply chain scenarios such as order-book based production control and closed-loop processes. Simulation is the most popular method adopted by researchers and the number of works based on discrete time based methods is greater than those utilising continuous time approaches. Most studies are conceptual with limited practical applications described. Future research needs to focus on cost, flexibility and sustainability in the context of supply chain dynamics and, although there are a few existing studies, more analytical approaches are required to gain robust insights into the influence of nonlinear elements on supply chain behaviour. Also, empirical exploitation of the existing models is recommended

    Surrogate model for real time signal control: theories and applications

    Get PDF
    Traffic signal controls play a vital role in urban road traffic networks. Compared with fixed-time signal control, which is solely based on historical data, real time signal control is flexible and responsive to varying traffic conditions, and hence promises better performance and robustness in managing traffic congestion. Real time signal control can be divided into model-based and model-free approaches. The former requires a traffic model (analytical or simulation-based) in the generation, optimisation and evaluation of signal control plans, which means that its efficacy in real-world deployment depends on the validity and accuracy of the underlying traffic model. Model-free real time signal control, on the other hand, is constructed based on expert experience and empirical observations. Most of the existing model-free real time signal controls, however, focus on learning-based and rule-based approaches, and either lack interpretability or are non-optimised. This thesis proposes a surrogate-based real time signal control and optimisation framework, that can determine signal decisions in a centralised manner without the use of any traffic model. Surrogate models offer analytical and efficient approximations of complex models or black-box processes by fitting their input-output structures with appropriate mathematical tools. Current research on surrogate-based optimisation is limited to strategic and off-line optimisation, which only approximates the relationship between decisions and outputs under highly specific conditions based on certain traffic simulation models and is still to be attempted for real time optimisation. This thesis proposes a framework for surrogate-based real time signal control, by constructing a response surface that encompasses, (1) traffic states, (2) control parameters, and (3) network performance indicators at the same time. A series of comprehensive evaluations are conducted to assess the effectiveness, robustness and computational efficiency of the surrogate-based real time signal control. In the numerical test, the Kriging model is selected to approximate the traffic dynamics of the test network. The results show that this Kriging-based real time signal control can increase the total throughput by 5.3% and reduce the average delay by 8.1% compared with the fixed-time baseline signal plan. In addition, the optimisation time can be reduced by more than 99% if the simulation model is replaced by a Kriging model. The proposed signal controller is further investigated via multi-scenario analyses involving different levels of information availability, network saturation and traffic uncertainty, which shows the robustness and reliability of the controller. Moreover, the influence of the baseline signal on the Kriging-based signal control can be eliminated by a series of off-line updates. By virtue of the model-free nature and the adaptive learning capability of the surrogate model, the Kriging-based real time signal control can adapt to systematic network changes (such as seasonal variations in traffic demand). The adaptive Kriging-based real time signal control can update the response surface according to the feedback from the actual traffic environment. The test results show that the adaptive Kriging-based real time signal control maintains the signal control performance better in response to systematic network changes than either fixed-time signal control or non-adaptive Kriging-based signal control.Open Acces

    A Survey of Decentralized Adaptive Control

    Get PDF
    Systems with multi inputs and multi outputs are in common controlled by centralized controllers, multivariable controllers or by a set of single input and single output controllers. The decentralized systems dominated in industry and can be found in a broad spectrum of applications ranging from robotics to civil engineering. Approaches to decentralized control design differ from each other in the assumptions ? kind of interaction, the model of the system, the model of information exchange and the control design. One of the useful approaches to decentralized control problems was the parametrization. During last years it was proven that it seems to be perspective to combine predictive and decentralized control, for example unconstrained decentralized model predictive control or adaptive decentralized control using recurrent fuzzy neural networks. Another task is to use automatic decentralized control structure selection. Adaptive control enlarges the area of usage at decentralized controllers. AdaptiveZ(MSM7088352101

    Optimal speed trajectory and energy management control for connected and automated vehicles

    Get PDF
    Connected and automated vehicles (CAVs) emerge as a promising solution to improve urban mobility, safety, energy efficiency, and passenger comfort with the development of communication technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). This thesis proposes several control approaches for CAVs with electric powertrains, including hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs), with the main objective to improve energy efficiency by optimising vehicle speed trajectory and energy management system. By types of vehicle control, these methods can be categorised into three main scenarios, optimal energy management for a single CAV (single-vehicle), energy-optimal strategy for the vehicle following scenario (two-vehicle), and optimal autonomous intersection management for CAVs (multiple-vehicle). The first part of this thesis is devoted to the optimal energy management for a single automated series HEV with consideration of engine start-stop system (SSS) under battery charge sustaining operation. A heuristic hysteresis power threshold strategy (HPTS) is proposed to optimise the fuel economy of an HEV with SSS and extra penalty fuel for engine restarts. By a systematic tuning process, the overall control performance of HPTS can be fully optimised for different vehicle parameters and driving cycles. In the second part, two energy-optimal control strategies via a model predictive control (MPC) framework are proposed for the vehicle following problem. To forecast the behaviour of the preceding vehicle, a neural network predictor is utilised and incorporated into a nonlinear MPC method, of which the fuel and computational efficiencies are verified to be effective through comparisons of numerical examples between a practical adaptive cruise control strategy and an impractical optimal control method. A robust MPC (RMPC) via linear matrix inequality (LMI) is also utilised to deal with the uncertainties existing in V2V communication and modelling errors. By conservative relaxation and approximation, the RMPC problem is formulated as a convex semi-definite program, and the simulation results prove the robustness of the RMPC and the rapid computational efficiency resorting to the convex optimisation. The final part focuses on the centralised and decentralised control frameworks at signal-free intersections, where the energy consumption and the crossing time of a group of CAVs are minimised. Their crossing order and velocity trajectories are optimised by convex second-order cone programs in a hierarchical scheme subject to safety constraints. It is shown that the centralised strategy with consideration of turning manoeuvres is effective and outperforms a benchmark solution invoking the widely used first-in-first-out policy. On the other hand, the decentralised method is proposed to further improve computational efficiency and enhance the system robustness via a tube-based RMPC. The numerical examples of both frameworks highlight the importance of examining the trade-off between energy consumption and travel time, as small compromises in travel time could produce significant energy savings.Open Acces

    Distributed Fault Estimation and Fault-Tolerant Control of Interconnected Systems

    Get PDF
    This paper studies distributed fault estimation and fault-tolerant control for continuous-time interconnected systems. Using associated information among subsystems to design the distributed fault estimation observer can improve the accuracy of fault estimation of interconnected systems. Based on static output feedback, the global outputs of interconnected systems are used to construct a distributed fault-tolerant control. The multi-constrained methods are proposed to enhance the transient performance and ability to suppress external disturbances simultaneously. The conditions of the presented design techniques are expressed in terms of linear matrix inequalities. Simulation results are illustrated to show the feasibility of the presented approaches

    On model predictive control for economic and robust operation of generalised flow-based networks

    Get PDF
    This thesis is devoted to design Model Predictive Control (MPC) strategies aiming to enhance the management of constrained generalised flow-based networks, with special attention to the economic optimisation and robust performance of such systems. Several control schemes are developed in this thesis to exploit the available economic information of the system operation and the disturbance information obtained from measurements and forecasting models. Dynamic network flows theory is used to develop control-oriented models that serve to design MPC controllers specialised for flow networks with additive disturbances and periodically time-varying dynamics and costs. The control strategies developed in this thesis can be classified in two categories: centralised MPC strategies and non-centralised MPC strategies. Such strategies are assessed through simulations of a real case study: the Barcelona drinking water network (DWN). Regarding the centralised strategies, different economic MPC formulations are first studied to guarantee recursive feasibility and stability under nominal periodic flow demands and possibly time-varying economic parameters and multi-objective cost functions. Additionally, reliability-based MPC, chance-constrained MPC and tree-based MPC strategies are proposed to address the reliability of both the flow storage and the flow transportation tasks in the network. Such strategies allow to satisfy a customer service level under future flow demand uncertainty and to efficiently distribute overall control effort under the presence of actuators degradation. Moreover, soft-control techniques such as artificial neural networks and fuzzy logic are used to incorporate self-tuning capabilities to an economic certainty-equivalent MPC controller. Since there are objections to the use of centralised controllers in large-scale networks, two non-centralised strategies are also proposed. First, a multi-layer distributed economic MPC strategy of low computational complexity is designed with a control topology structured in two layers. In a lower layer, a set of local MPC agents are in charge of controlling partitions of the overall network by exchanging limited information on shared resources and solving their local problems in a hierarchical-like fashion. Moreover, to counteract the loss of global economic information due to the decomposition of the overall control task, a coordination layer is designed to influence non-iteratively the decision of local controllers towards the improvement of the overall economic performance. Finally, a cooperative distributed economic MPC formulation based on a periodic terminal cost/region is proposed. Such strategy guarantees convergence to a Nash equilibrium without the need of a coordinator and relies on an iterative and global communication of local controllers, which optimise in parallel their control actions but using a centralised model of the network.Esta tesis se enfoca en el diseño de estrategias de control predictivo basado en modelos (MPC, por sus siglas en inglés) con la meta de mejorar la gestión de sistemas que pueden ser descritos por redes generalizadas de flujo y que están sujetos a restricciones, enfatizando especialmente en la optimización económica y el desempeño robusto de tales sistemas. De esta manera, varios esquemas de control se desarrollan en esta tesis para explotar tanto la información económica disponible de la operación del sistema como la información de perturbaciones obtenida de datos medibles y de modelos de predicción. La teoría de redes dinámicas de flujo es utilizada en esta tesis para desarrollar modelos orientados a control que sirven para diseñar controladores MPC especializados para la gestión de redes de flujo que presentan tanto perturbaciones aditivas como dinámicas y costos periódicamente variables en el tiempo. Las estrategias de control propuestas en esta tesis se pueden clasificar en dos categorías: estrategias de control MPC centralizado y estrategias de control MPC no-centralizado. Dichas estrategias son evaluadas mediante simulaciones de un caso de estudio real: la red de transporte de agua potable de Barcelona en España. En cuanto a las estrategias de control MPC centralizado, diferentes formulaciones de controladores MPC económicos son primero estudiadas para garantizar factibilidad recursiva y estabilidad del sistema cuya operación responde a demandas nominales de flujo periódico, a parámetros económicos posiblemente variantes en el tiempo y a funciones de costo multi-objetivo. Adicionalmente, estrategias de control MPC basado en fiabilidad, MPC con restricciones probabilísticas y MPC basado en árboles de escenarios son propuestas para garantizar la fiabilidad tanto de tareas de almacenamiento como de transporte de flujo en la red. Tales estrategias permiten satisfacer un nivel de servicio al cliente bajo incertidumbre en la demanda futura, así como distribuir eficientemente el esfuerzo global de control bajo la presencia de degradación en los actuadores del sistema. Por otra parte, técnicas de computación suave como redes neuronales artificiales y lógica difusa se utilizan para incorporar capacidades de auto-sintonía en un controlador MPC económico de certeza-equivalente. Dado que hay objeciones al uso de control centralizado en redes de gran escala, dos estrategias de control no-centralizado son propuestas en esta tesis. Primero, un controlador MPC económico distribuido de baja complejidad computacional es diseñado con una topología estructurada en dos capas. En una capa inferior, un conjunto de controladores MPC locales se encargan de controlar particiones de la red mediante el intercambio de información limitada de los recursos físicos compartidos y resolviendo sus problemas locales de optimización de forma similar a una secuencia jerárquica de solución. Para contrarrestar la pérdida de información económica global que ocurra tras la descomposición de la tarea de control global, una capa de coordinación es diseñada para influenciar no-iterativamente la decisión de los controles locales con el fin de lograr una mejora global del desempeño económico. La segunda estrategia no-centralizada propuesta en esta tesis es una formulación de control MPC económico distribuido cooperativo basado en una restricción terminal periódica. Tal estrategia garantiza convergencia a un equilibrio de Nash sin la necesidad de una capa de coordinación pero requiere una comunicación iterativa de información global entre todos los controladores locales, los cuales optimizan en paralelo sus acciones de control utilizando un modelo centralizado de la red
    • …
    corecore