2,061 research outputs found

    Adaptive frequency-domain equalization for single-carrier multiple-input multiple-output wireless transmissions

    Get PDF

    Adaptive frequency-domain equalization for single-carrier MIMO systems

    Get PDF

    Frequency Domain Hybrid-ARQ Chase Combining for Broadband MIMO CDMA Systems

    Get PDF
    In this paper, we consider high-speed wireless packet access using code division multiple access (CDMA) and multiple-input multiple-output (MIMO). Current wireless standards, such as high speed packet access (HSPA), have adopted multi-code transmission and hybrid-automatic repeat request (ARQ) as major technologies for delivering high data rates. The key technique in hybrid-ARQ, is that erroneous data packets are kept in the receiver to detect/decode retransmitted ones. This strategy is refereed to as packet combining. In CDMA MIMO-based wireless packet access, multi-code transmission suffers from severe performance degradation due to the loss of code orthogonality caused by both interchip interference (ICI) and co-antenna interference (CAI). This limitation results in large transmission delays when an ARQ mechanism is used in the link layer. In this paper, we investigate efficient minimum mean square error (MMSE) frequency domain equalization (FDE)-based iterative (turbo) packet combining for cyclic prefix (CP)-CDMA MIMO with Chase-type ARQ. We introduce two turbo packet combining schemes: i) In the first scheme, namely "chip-level turbo packet combining", MMSE FDE and packet combining are jointly performed at the chip-level. ii) In the second scheme, namely "symbol-level turbo packet combining", chip-level MMSE FDE and despreading are separately carried out for each transmission, then packet combining is performed at the level of the soft demapper. The computational complexity and memory requirements of both techniques are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. The throughput is evaluated for some representative antenna configurations and load factors to show the gains offered by the proposed techniques.Comment: Submitted to IEEE Transactions on Vehicular Technology (Apr 2009

    Turbo Packet Combining for Broadband Space-Time BICM Hybrid-ARQ Systems with Co-Channel Interference

    Full text link
    In this paper, efficient turbo packet combining for single carrier (SC) broadband multiple-input--multiple-output (MIMO) hybrid--automatic repeat request (ARQ) transmission with unknown co-channel interference (CCI) is studied. We propose a new frequency domain soft minimum mean square error (MMSE)-based signal level combining technique where received signals and channel frequency responses (CFR)s corresponding to all retransmissions are used to decode the data packet. We provide a recursive implementation algorithm for the introduced scheme, and show that both its computational complexity and memory requirements are quite insensitive to the ARQ delay, i.e., maximum number of ARQ rounds. Furthermore, we analyze the asymptotic performance, and show that under a sum-rank condition on the CCI MIMO ARQ channel, the proposed packet combining scheme is not interference-limited. Simulation results are provided to demonstrate the gains offered by the proposed technique.Comment: 12 pages, 7 figures, and 2 table

    Low-complexity iterative receiver algorithms for multiple-input multiple-output underwater wireless communications

    Get PDF
    This dissertation proposes three low-complexity iterative receiver algorithms for multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications. First is a bidirectional soft-decision feedback Turbo equalizer (Bi-SDFE) which harvests the time-reverse diversity in severe multipath MIMO channels. The Bi-SDFE outperforms the original soft-decision feedback Turbo equalizer (SDFE) while keeping its total computational complexity similar to that of the SDFE. Second, this dissertation proposes an efficient direct adaptation Turbo equalizer for MIMO UWA communications. Benefiting from the usage of soft-decision reference symbols for parameter adaptation as well as the iterative processing inside the adaptive equalizer, the proposed algorithm is efficient in four aspects: robust performance in tough channels, high spectral efficiency with short training overhead, time efficient with fast convergence and low complexity in hardware implementation. Third, a frequency-domain soft-decision block iterative equalizer combined with iterative channel estimation is proposed for the uncoded single carrier MIMO systems with high data efficiency. All the three new algorithms are evaluated by data recorded in real world ocean experiment or pool experiment. Finally, this dissertation also compares several Turbo equalizers in single-input single-output (SISO) UWA channels. Experimental results show that the channel estimation based Turbo equalizers are robust in SISO underwater transmission under harsh channel conditions --Abstract, page iv

    Channel and noise variance estimation and tracking algorithms for unique-word based single-carrier systems

    Get PDF
    corecore