779 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Performance Study of Hybrid Spread Spectrum Techniques

    Get PDF
    This thesis focuses on the performance analysis of hybrid direct sequence/slow frequency hopping (DS/SFH) and hybrid direct sequence/fast frequency hopping (DS/FFH) systems under multi-user interference and Rayleigh fading. First, we analyze the performance of direct sequence spread spectrum (DSSS), slow frequency hopping (SFH) and fast frequency hopping (FFH) systems for varying processing gains under interference environment assuming equal bandwidth constraint with Binary Phase Shift Keying (BPSK) modulation and synchronous system. After thorough literature survey, we show that hybrid DS/FFH systems outperform both SFH and hybrid DS/SFH systems under Rayleigh fading and multi-user interference. Also, both hybrid DS/SFH and hybrid DS/FFH show performance improvement with increasing spreading factor and decreasing number of hopping frequencies

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    JamLab: Augmenting Sensornet Testbeds with Realistic and Controlled Interference Generation

    Get PDF
    Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols

    Low-Power Wireless for the Internet of Things: Standards and Applications: Internet of Things, IEEE 802.15.4, Bluetooth, Physical layer, Medium Access Control,coexistence, mesh networking, cyber-physical systems, WSN, M2M

    Get PDF
    International audienceThe proliferation of embedded systems, wireless technologies, and Internet protocols have enabled the Internet of Things (IoT) to bridge the gap between the virtual and physical world through enabling the monitoring and actuation of the physical world controlled by data processing systems. Wireless technologies, despite their offered convenience, flexibility, low cost, and mobility pose unique challenges such as fading, interference, energy, and security, which must be carefully addressed when using resource-constrained IoT devices. To this end, the efforts of the research community have led to the standardization of several wireless technologies for various types of application domains depending on factors such as reliability, latency, scalability, and energy efficiency. In this paper, we first overview these standard wireless technologies, and we specifically study the MAC and physical layer technologies proposed to address the requirements and challenges of wireless communications. Furthermore, we explain the use of these standards in various application domains, such as smart homes, smart healthcare, industrial automation, and smart cities, and discuss their suitability in satisfying the requirements of these applications. In addition to proposing guidelines to weigh the pros and cons of each standard for an application at hand, we also examine what new strategies can be exploited to overcome existing challenges and support emerging IoT applications

    Supervisory Wireless Control for Critical Industrial Applications

    Get PDF

    Optimisation of Bluetooth wireless personal area networks

    Get PDF
    In recent years there has been a marked growth in the use of wireless cellular telephones, PCs and the Internet. This proliferation of information technology has hastened the advent of wireless networks which aim to increase the accessibility and reach of communications devices. Ambient Intelligence (Ami) is a vision of the future of computing in which all kinds of everyday objects will contain intelligence. To be effective, Ami requires Ubiquitous Computing and Communication, the latter being enabled by wireless networking. The IEEE's 802.11 task group has developed a series of radio based replacements for the familiar wired ethernet LAN. At the same time another IEEE standards task group, 802.15, together with a number of industry consortia, has introduced a new level of wireless networking based upon short range, ad-hoc connections. Currently, the most significant of these new Wireless Personal Area Network (WPAN) standards is Bluetooth, one of the first of the enabling technologies of Ami to be commercially available. Bluetooth operates in the internationally unlicensed Industrial, Scientific and Medical (ISM) band at 2.4 GHz. unfortunately, this spectrum is particularly crowded. It is also used by: WiFi (IEEE 802.11); a new WPAN standard called Zig- Bee; many types of simple devices such as garage door openers; and is polluted by unintentional radiators. The success of a radio specification for ubiquitous wireless communications is, therefore, dependant upon a robust tolerance to high levels of electromagnetic noise. This thesis addresses the optimisation of low power WPANs in this context, with particular reference to the physical layer radio specification of the Bluetooth system

    Interference issues and mitigation method in WSN 2.4GHz ISM band: A survey

    Get PDF
    Current lifestyles promote the development and advancement in wireless technologies, especially in Wireless Sensor Networks (WSN) due to its several benefits.WSN offers a low cost, low data rate, flexible routing, longer lifetime, and low-energy consumption suitable for unmanned and long term monitoring.Among huge WSN applications, some key applications are smart houses, environmental monitoring, military applications, and other monitoring applications.As a result, ubiquitous increase in the number of wireless devices occupying the 2.4GHz frequency band.This causes a dense wireless connection followed by interference problem to WSN in the 2.4GHz frequency band. WSN is most affected by the interference issue because it has a lower data rate and transmission power compared to WLAN.Despite efforts made by researchers, to the author's knowledge, the interference issue is still a major problem in wireless networks.This paper aims to review the coexistence and interference issues of existing wireless technologies in the 2.4GHz Industrial, Scientific and Medical (ISM) band.Keywords— Coexistence, Frequency Spectrum, IEEE 802.15.4, Interference, WSN, 2.4GHz ISM ban
    • …
    corecore