3,456 research outputs found

    Behaviour of Thin Aluminium Plates Subjected to Impact by Ogive-nosed Projectiles

    Get PDF
    A pneumatic gas gun has been used to fire ogive-nosed projectiles on aluminium plates(1mm) at varying impact velocities above the ballistic limit. Impact and residual velocities havebeen measured. Deformation of the target plate was studied. Experimental results formed thebasis of a subsequent finite element analysis of the problem using the ABAQUS 6.3 code. TheJohnson-Cook plastic flow and fracture model available in the code were utilised. Explicit finiteelement analysis has been performed to model the perforation phenomenon. Numerical resultswere significantly improved by reducing the element size up to a certain level beyond which nosignificant variation in the results was observed. Adaptive meshing has been found to be usefulin obtaining the accurate results and avoiding the problem of premature termination of theprogram due to excessive element distortion. Experimental and numerical results are comparedand a good agreement between the two has been found

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Software for evaluating probability-based integrity of reinforced concrete structures

    Get PDF
    In recent years, much research work has been carried out in order to obtain a more controlled durability and long-term performance of concrete structures in chloride containing environment. In particular, the development of new procedures for probability-based durability design has proved to give a more realistic basis for the analysis. Although there is still a lack of relevant data, this approach has been successfully applied to several new concrete structures, where requirements to a more controlled durability and service life have been specified. A probability-based durability analysis has also become an important and integral part of condition assessment of existing concrete structures in chloride containing environment. In order to facilitate the probability-based durability analysis, a software named DURACON has been developed, where the probabilistic approach is based on a Monte Carlo simulation. In the present paper, the software for the probability-based durability analysis is briefly described and used in order to demonstrate the importance of the various durability parameters affecting the durability of concrete structures in chloride containing environment

    A Multiscale Study of a Nickel Penetrator Striking a Copper Plate under Very High Strain Rates

    Get PDF
    The objective of this dissertation centers on gaining a better understanding of the structure - property - performance relations of nickel and copper through the advanced multiscale theoretical framework and integrated computational methods. The goal of this dissertation also includes to combine material science and computational mechanics to acquire a transformative understanding of how the different crystal orientations, size scales, and penetration velocities affect plastic deformation and damage behavior of metallic materials during high strain rate (\u3e 103s-1) processes. A multiscale computational framework for understanding plasticity and shearing mechanisms of metallic materials during the high rate process was developed, which for the first time reveals micromechanical insights on how different crystal orientations, size scales, and penetration velocities affect the atomistic simulations which render structure property information for plasticity, shearing and damage mechanisms. The contributions of this dissertation include: (1) Comprehensive understanding of the plasticity and shearing mechanisms between the nickel penetrator and copper target under high strain rates (2) Development of a multiscale study of a nickel penetrator striking a copper plate by employing macroscale simulations and atomistic simulations to better understand the micromechanisms. (3) An essential description of how different crystal orientations, size scales, and strain rates affect the plasticity and shearing mechanisms

    Numerical simulations of delamination in fibre reinforced plastic shell structures using XFEM

    Get PDF
    [no abstract

    A comparative review of peridynamics and phase-field models for engineering fracture mechanics

    Get PDF
    Computational modeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are briefly summarized for both models. Validation against experimental data is essential for all computational methods to demonstrate predictive accuracy. To that end, the Sandia Fracture Challenge and similar experimental data sets where both models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and predictive capabilities, with their relative advantages and challenges are summarized. © 2022, The Author(s)

    A comparative review of peridynamics and phase-field models for engineering fracture mechanics

    Get PDF
    Computational modeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical analysis are briefly summarized for both models. Validation against experimental data is essential for all computational methods to demonstrate predictive accuracy. To that end, the Sandia Fracture Challenge and similar experimental data sets where both models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and predictive capabilities, with their relative advantages and challenges are summarized

    Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model

    Get PDF
    Artículo Open Access en el sitio web del editor. Pago por publicar en abierto.The problem of a crack impinging on an interface has been thoroughly investigated in the last three decades due to its important role in the mechanics and physics of solids. In the current investigation, this problem is revisited in view of the recent progresses on the phase field approach of brittle fracture. In this concern, a novel formulation combining the phase field approach for modeling brittle fracture in the bulk and a cohesive zone model for pre-existing adhesive interfaces is herein proposed to investigate the competition between crack penetration and deflection at an interface. The model, implemented within the finite element method framework using a monolithic fully implicit solution strategy, is applied to provide a further insight into the understanding of the role of model parameters on the above competition. In particular, in this study, the role of the fracture toughness ratio between the interface and the adjoining bulks and of the characteristic fracture-length scales of the dissipative models is analyzed. In the case of a brittle interface, the asymptotic predictions based on linear elastic fracture mechanics criteria for crack penetration, single deflection or double deflection are fully captured by the present method. Moreover, by increasing the size of the process zone along the interface, or by varying the internal length scale of the phase field model, new complex phenomena are emerging, such as simultaneous crack penetration and deflection and the transition from single crack penetration to deflection and penetration with subsequent branching into the bulk. The obtained computational trends are in very good agreement with previous experimental observations and the theoretical considerations on the competition and interplay between both fracture mechanics models open new research perspectives for the simulation and understanding of complex fracture patterns.Unión Europea FP/2007-2013/ERC 306622Ministerio de Economía y Competitividad DPI2012-37187, MAT2015-71036-P y MAT2015-71309-PJunta de Andalucía P11-TEP-7093 y P12-TEP- 105
    corecore