142 research outputs found

    FEC killed the cut-through switch

    Get PDF
    Latency penalty in Ethernet links beyond 10Gb/s is due to forward error correction (FEC) blocks. In the worst case a single-hop penalty approaches the latency of an entire cutthrough switch. Latency jitter is also introduced, making latency prediction harder, with large peak to peak variance. These factors stretch the tail of latency distribution in Rackscale systems and Data Centers, which in turn degrades performance of distributed applications. We analyse the underlying mechanisms, calculate lower bounds and propose a different approach that would reduce the penalty, allow control over latency and feedback for application level optimisation.Rudin foundation, Isaac Newton trust, Leverhulme trust, Microsoft researc

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Adaptive Communication for Mobile Multi-Robot Systems

    Full text link
    Mobile multi-robot systems can be immensely powerful, serving as force multipliers for human operators in search-and-rescue operations, urban reconnaissance missions, and more. Key to fulfilling this potential is robust communication, which allows robots to share sensor data or inform others of their intentions. However, wireless communication is often unreliable for mobile multi-robot systems, exhibiting losses, delays, and outages as robots move through their environment. Furthermore, the wireless communication spectrum is a shared resource, and multi-robot systems must determine how to use its limited bandwidth in accomplishing their missions. This dissertation addresses the challenges of inter-robot communication in two thrusts. In the first thrust, we improve the reliability of such communication through the application of a technique we call Adaptive Erasure Coding (AEC). Erasure codes enable recovery from packet loss through the use of redundancy. Conditions in a mobile robotic network are continually changing, so AEC varies the amount of redundancy applied to achieve a probabilistic delivery guarantee. In the second thrust, we describe a mechanism by which robots can make communication decisions by considering the expected effect of a proposed communication action on team performance. We call this algorithm Optimizing Communication under Bandwidth Constraints (OCBC). Given a finite amount of available bandwidth, OCBC optimizes the contents of a message to respect the bandwidth constraint.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149815/1/ryanjmar_1.pd

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence

    Get PDF
    The tactile internet (TI) is believed to be the prospective advancement of the internet of things (IoT), comprising human-to-machine and machine-to-machine communication. TI focuses on enabling real-time interactive techniques with a portfolio of engineering, social, and commercial use cases. For this purpose, the prospective 5{th} generation (5G) technology focuses on achieving ultra-reliable low latency communication (URLLC) services. TI applications require an extraordinary degree of reliability and latency. The 3{rd} generation partnership project (3GPP) defines that URLLC is expected to provide 99.99% reliability of a single transmission of 32 bytes packet with a latency of less than one millisecond. 3GPP proposes to include an adjustable orthogonal frequency division multiplexing (OFDM) technique, called 5G new radio (5G NR), as a new radio access technology (RAT). Whereas, with the emergence of a novel physical layer RAT, the need for the design for prospective next-generation technologies arises, especially with the focus of network intelligence. In such situations, machine learning (ML) techniques are expected to be essential to assist in designing intelligent network resource allocation protocols for 5G NR URLLC requirements. Therefore, in this survey, we present a possibility to use the federated reinforcement learning (FRL) technique, which is one of the ML techniques, for 5G NR URLLC requirements and summarizes the corresponding achievements for URLLC. We provide a comprehensive discussion of MAC layer channel access mechanisms that enable URLLC in 5G NR for TI. Besides, we identify seven very critical future use cases of FRL as potential enablers for URLLC in 5G NR

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Haptic data reduction through dynamic perceptual analysis and event-based communication

    Full text link
    This research presents an adjustable and flexible framework for haptic data compression and communication that can be used in a robotic teleoperation session. The framework contains a customized event-driven transmission control protocol, several dynamically adaptive perceptual and prediction methods for haptic sample reduction, and last but not the least, an architecture for the data flow
    • …
    corecore