427 research outputs found

    3D Ultrasound-Guided Motion Compensation System for Beating Heart Mitral Valve Repair

    Get PDF
    Beating heart intracardiac procedures promise significant benefits for patients, however, the fast motion of the heart poses serious challenges to surgeons. We present a new 3D ultrasound-guided motion (3DUS) compensation system that synchronizes instrument motion with the heart. The system utilizes the fact that the motion of some intracardiac structures, including the mitral valve annulus, is largely constrained to translation along one axis. This allows the development of a real-time 3DUS tissue tracker which we integrate with a 1 degree-of-freedom actuated surgical instrument, real-time 3DUS instrument tracker, and predictive filter to devise a system with synchronization accuracy of 1.8 mm RMSE. User studies involving the deployment of surgical anchors in a simulated mitral annuloplasty procedure demonstrate that the system increases success rates by over 100%. Furthermore, it enables more careful anchor deployment by reducing forces to the tissue by 50% while allowing instruments to remain in contact with the tissue for longer periods.Engineering and Applied Science

    Motion Tracking for Minimally Invasive Robotic Surgery

    Get PDF

    Robotic Motion Compensation for Beating Heart Intracardiac Surgery

    Get PDF
    3D ultrasound imaging has enabled minimally invasive, beating heart intracardiac procedures. However, rapid heart motion poses a serious challenge to the surgeon that is compounded by significant time delays and noise in 3D ultrasound. This paper investigates the concept of using a one-degree-of-freedom motion compensation system to synchronize with tissue motions that may be approximated by 1D motion models. We characterize the motion of the mitral valve annulus and show that it is well approximated by a 1D model. The subsequent development of a motion compensation instrument (MCI) is described, as well as an extended Kalman filter (EKF) that compensates for system delays. The benefits and robustness of motion compensation are tested in user trials under a series of non-ideal tracking conditions. Results indicate that the MCI provides an approximately 50% increase in dexterity and 50% decrease in force when compared with a solid tool, but is sensitive to time delays. We demonstrate that the use of the EKF for delay compensation restores performance, even in situations of high heart rate variability. The resulting system is tested in an in vitro 3D ultrasound-guided servoing task, yielding accurate tracking (1.15 mm root mean square) in the presence of noisy, time-delayed 3D ultrasound measurements.Engineering and Applied Science

    Heart Motion Prediction in Robotic- Assisted Beating Heart Surgery: A Nonlinear Fast Adaptive Approach

    Get PDF
    Off-pump Coronary Artery Bypass Graft (CABG) surgery outperforms traditional on-pump surgery because the assisted robotic tools can alleviate the relative motion between the beating heart and robotic tools. Therefore, it is possible for the surgeon to operate on the beating heart and thus lessens post surgery complications for the patients. Due to the highly irregular and non-stationary nature of heart motion, it is critical that the beating heart motion is predicted in the model-based track control procedures. It is technically preferable to model heart motion in a nonlinear way because the characteristic analysis of 3D heart motion data through Bi-spectral analysis and Fourier methods demonstrates the involved nonlinearity of heart motion. We propose an adaptive nonlinear heart motion model based on the Volterra Series in this paper. We also design a fast lattice structure to achieve computational-efficiency for real-time online predictions. We argue that the quadratic term of the Volterra Series can improve the prediction accuracy by covering sharp change points and including the motion with sufficient detail. The experiment results indicate that the adaptive nonlinear heart motion prediction algorithm outperforms the autoregressive (AR) and the time-varying Fourier-series models in terms of the root mean square of the prediction error and the prediction error in extreme cases.Keywords: System, Bypass, Synchronization, Identificatio

    Robotic Ultrasound Imaging: State-of-the-Art and Future Perspectives

    Full text link
    Ultrasound (US) is one of the most widely used modalities for clinical intervention and diagnosis due to the merits of providing non-invasive, radiation-free, and real-time images. However, free-hand US examinations are highly operator-dependent. Robotic US System (RUSS) aims at overcoming this shortcoming by offering reproducibility, while also aiming at improving dexterity, and intelligent anatomy and disease-aware imaging. In addition to enhancing diagnostic outcomes, RUSS also holds the potential to provide medical interventions for populations suffering from the shortage of experienced sonographers. In this paper, we categorize RUSS as teleoperated or autonomous. Regarding teleoperated RUSS, we summarize their technical developments, and clinical evaluations, respectively. This survey then focuses on the review of recent work on autonomous robotic US imaging. We demonstrate that machine learning and artificial intelligence present the key techniques, which enable intelligent patient and process-specific, motion and deformation-aware robotic image acquisition. We also show that the research on artificial intelligence for autonomous RUSS has directed the research community toward understanding and modeling expert sonographers' semantic reasoning and action. Here, we call this process, the recovery of the "language of sonography". This side result of research on autonomous robotic US acquisitions could be considered as valuable and essential as the progress made in the robotic US examination itself. This article will provide both engineers and clinicians with a comprehensive understanding of RUSS by surveying underlying techniques.Comment: Accepted by Medical Image Analysi
    • …
    corecore