4,643 research outputs found

    Extending The Lossy Spring-Loaded Inverted Pendulum Model with a Slider-Crank Mechanism

    Get PDF
    Spring Loaded Inverted Pendulum (SLIP) model has a long history in describing running behavior in animals and humans as well as has been used as a design basis for robots capable of dynamic locomotion. Anchoring the SLIP for lossy physical systems resulted in newer models which are extended versions of original SLIP with viscous damping in the leg. However, such lossy models require an additional mechanism for pumping energy to the system to control the locomotion and to reach a limit-cycle. Some studies solved this problem by adding an actively controllable torque actuation at the hip joint and this actuation has been successively used in many robotic platforms, such as the popular RHex robot. However, hip torque actuation produces forces on the COM dominantly at forward direction with respect to ground, making height control challenging especially at slow speeds. The situation becomes more severe when the horizontal speed of the robot reaches zero, i.e. steady hoping without moving in horizontal direction, and the system reaches to singularity in which vertical degrees of freedom is completely lost. To this end, we propose an extension of the lossy SLIP model with a slider-crank mechanism, SLIP- SCM, that can generate a stable limit-cycle when the body is constrained to vertical direction. We propose an approximate analytical solution to the nonlinear system dynamics of SLIP- SCM model to characterize its behavior during the locomotion. Finally, we perform a fixed-point stability analysis on SLIP-SCM model using our approximate analytical solution and show that proposed model exhibits stable behavior in our range of interest.Comment: To appear in The 17th International Conference on Advanced Robotic

    Actuators for smart applications

    Get PDF
    Actuator manufacturers are developing promising technologies\ud which meet high requirements in performance, weight and\ud power consumption. Conventionally, actuators are characterized\ud by their displacement and load performance. This hides the\ud dynamic aspects of those actuation solutions. Work per weight\ud performed by an actuation mechanism and the time needed to\ud develop this mechanical energy are by far more relevant figures.\ud Based on these figures, a selection process was developed.\ud With time and energy constraints, it highlights the most\ud weight efficient actuators. This process has been applied to the\ud Gurney flap technology used as a morphing concept for rotorblades.\ud Three control schemes were considered and simulations\ud were performed to investigate the mechanical work required. It\ud brought forward piezoelectric stack actuators as the most effective\ud solution in the case of an actively controlled rotorblade. The\ud generic nature of the procedure allows to use it for a wide range\ud of applications

    An analytical and experimental investigation of flutter suppression via piezoelectric actuation

    Get PDF
    The objective of this research was to analytically and experimentally study the capabilities of adaptive material plate actuators for suppressing flutter. Piezoelectrics are materials which are characterized by their ability to produce voltage when subjected to a mechanical strain. The converse piezoelectric effect can be utilized to actuate a structure by applying a voltage. For this investigation, a two degree of freedom wind-tunnel model was designed, analyzed, and tested. The model consisted of a rigid wing and a flexible mount system which permitted translational and rotational degrees of freedom. Actuators, made of piezoelectric material were affixed to leaf springs on the mount system. Command signals, applied to the piezoelectric actuators, exerted control over the closed-loop damping and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element and stiffness properties. A mathematical aeroservoelastic model was constructed using finite element methods, laminated plate theory, and aeroelastic analysis tools. A flutter suppression control law was designed, implemented on a digital control computer, and tested to conditions 20 percent above the passive flutter speed of the model. The experimental results represent the first time that adaptive materials have been used to actively suppress flutter. It demonstrates that small, carefully-placed actuating plates can be used effectively to control aeroelastic response

    Control technology overview in CSI

    Get PDF
    A brief control technology overview is given in Control Structures Interaction (CSI) by illustrating that many future NASA mission present significant challenges as represented by missions having a significantly increased number of important system states which may require control and by identifying key CSI technology needs. The JPL CSI related technology developments are discussed to illustrate that some of the identified control needs are being pursued. Since experimental confirmation of the assumptions inherent in the CSI technology is critically important to establishing its readiness for space program applications, the areas of ground and flight validation require high priority

    Controls and guidance research

    Get PDF
    The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory

    Design criteria for flight evaluation. Monograph 4 - Control system evaluation

    Get PDF
    Methods and analyses for flight evaluation of control systems for multistage launch vehicle

    Predictive Control of Autonomous Kites in Tow Test Experiments

    Get PDF
    In this paper we present a model-based control approach for autonomous flight of kites for wind power generation. Predictive models are considered to compensate for delay in the kite dynamics. We apply Model Predictive Control (MPC), with the objective of guiding the kite to follow a figure-of-eight trajectory, in the outer loop of a two level control cascade. The tracking capabilities of the inner-loop controller depend on the operating conditions and are assessed via a frequency domain robustness analysis. We take the limitations of the inner tracking controller into account by encoding them as optimisation constraints in the outer MPC. The method is validated on a kite system in tow test experiments.Comment: The paper has been accepted for publication in the IEEE Control Systems Letters and is subject to IEEE Control Systems Society copyright. Upon publication, the copy of record will be available at http://ieeexplore.ieee.or
    corecore