562 research outputs found

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Performance Evaluation of Received Signal Strength Based Hard Handover for UTRAN LTE

    Get PDF

    On the modeling of WCDMA system performance with propagation data

    Get PDF
    The aim of this study was to develop calculation methods for estimating the most important system level performance characteristics of the WCDMA radio network (i.e. network capacity and coverage) in the presence of interference from various sources. The calculation methods described in this work enable the fast design of radio systems with a reasonable degree of accuracy, where different system parameters, propagation conditions and networks as well as frequency scenarios can be easily tested. The work also includes the development and verification of a propagation model for a microcellular environment. Traditionally, system level performance figures have been retrieved using system simulations where the radio network has been modeled as accurately as possible. This has included base stations and mobile stations, propagation models, traffic models and mobility models. Various radio resource management (RRM) algorithms, such as power controls and handovers have also been modeled. However, these system simulations are very complex and time consuming and typically the models are difficult to modify. The idea behind this work is to use the main statistical parameters retrieved from accurate, case specific propagation models and to use these statistics as input for the developed analytical radio network models. When used as output from these analytical models we are able to obtain the performance measures of the network. The specific application area for the developed methods is the evaluation of the effect of the interference from the adjacent frequency channels. Adjacent channel interference decreases the efficiency of the usage of the electromagnetic spectrum i.e. the spectral efficiency. The aim of a radio system design is to ensure that the reduction in the spectral efficiency is as low as possible. This interference may originate from the same or a different radio system and from the same or another operator's network. The strength of this interference is dependent on the system parameters and the network layout. The standard questions regarding adjacent system interference between different operators' network are what guard band is needed between the radio carriers in order to maintain the quality of the network or what are the main mobile and network parameters, such as adjacent channel emission levels or adjacent channel selectivity, required in order to achieve satisfactory network performance. With the developed method proposed here it is possible to answer these questions with reasonable accuracy. One important aspect of network performance is the radio wave propagation environment for which the radio systems are designed. This thesis presents methods evaluating radio wave propagation, especially for cases where the base station antenna is below the rooftops, i.e. in the case of microcellular network environments. The developed microcellular propagation model has been developed for network planning purposes and it has been verified using numerous field propagation measurements. The model can be used in cases where the mobile station is located either indoors or outdoors.reviewe

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Performance Analysis of Handover Measurements and Layer 3 Filtering for UTRAN LTE

    Get PDF
    • …
    corecore