184 research outputs found

    An adaptive method for video denoising based on the ICI rule

    Get PDF
    This paper presents an adaptive video denoising technique based on the intersection of confidence intervals (ICI) rule used for adaptive filter support size calculation. The method is applied to three real-life video signals and its denoising performance is compared to a fixed size filter support based method resulting in a significant estimation error reduction in terms of the average frame peak signal-to-noise ratio (PSNR) improvement. The average frame PSNR obtained by using the here presented ICI based video denoising method is increased by up to 14.64 dB and by up to 23.74 dB when compared to the fixed size filter support based method. Furthermore, unlike the fixed size filter support based method, the adaptive ICI based method is shown to be efficient in a moving object edge preserving, while avoiding its blurring. The method performs well for both video signals obtained by recording stationary scenes, and video signals of moving objects, which are far more often encountered in practical applications, whereas the fixed size filter support based method is limited only to video signals of stationary scenes

    Adaptive Methods for Video Denoising Based on the ICI, FICI, and RICI Algorithms

    Get PDF
    In various applications, reducing noise from video sequence is of crucial importance. In this paper, we have presented performance analysis of the novel video denoising method based on the relative intersection of confidence intervals (RICI) rule, and compared it to the methods based on the intersection of confidence intervals (ICI) rule and the fast ICI (FICI) rule. Detailed comparisons, based on two test video signals, are provided for a range of noise levels and different noise types. The RICI video denoising method has shown to outperform the original ICI based method, both in the algorithms execution time, reducing it by up to 11 %, and in the level of noise suppression, improving it by up to 10 dB. It also outperforms the FICI based video denoising method by up to 12.7 dB for the two test videos

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    Algoritam za brzo uklanjanje šuma iz video signala temeljen na ICI postupku

    Get PDF
    In this paper, we have proposed a fast method for video denoising using the modified intersection of confidence intervals (ICI) rule, called fast ICI (FICI) method. The goal of the new FICI based video denoising method is to maintain an acceptable quality level of the denoised video estimate, and at the same time to significantly reduce denoising execution time when compared to the original ICI based method. The methods are tested on real-life video signals and their performances are analyzed and compared. It is shown that the FICI method outperforms the ICI method in terms of the execution time reduction by up to 96% (or up to 25 times). However, practical application demands dictate the choice of the video denoising method. If one wants fast denoising method with decent denoising results, the FICI based video denoising method is a better choice. The original ICI method, however, should be used in applications where significant noise suppression is an imperative regardless the computational complexity.U ovom smo radu predložili brzi postupak za uklanjanje šuma iz video signala koristeći modificirano pravilo presjecišta intervala pouzdanosti (eng. intersection of confidence intervals - ICI), nazvano brzim ICI (eng. fast ICI -- FICI) postupkom. Cilj novog FICI postupka za uklanjanje šuma iz video signala jest da se, uz zadržavanje prihvatljive razine kvalitete odšumljenog video signala, značajno smanji vrijeme izvršavanja algoritma u usporedbi s izvornim ICI postupkom. Postupci su testirani na realnim video signalima, a njihove su performanse analizirane i uspoređene.Pokazano je da FICI postupak ima do 96% kraće vrijeme izvršavanja (odnosno kraće i do 25 puta) u usporedi s izvornim ICI postupkom. Međutim, zahtjevi praktične primjene određuju izbor postupka za uklanjanje šuma iz video signala. Ukoliko je potrebno brzo izvršavanje s pristojnim performansama uklanjanja šuma, FICI postupak je bolji izbor. Međutim, u aplikacijama kojima je imperativ značajno suzbijanje šuma bez obzira na računsku složenost, trebao bi se koristiti izvorni ICI postupak

    Optimizing the usage of 2D and 3D transformations to improve the BM3D image denoising algorithm

    Get PDF
    Image denoising is one of the most important pre-processing steps prior to wide range of applications such as image restoration, visual tracking, image segmentation, etc. Numerous studies have been conducted to improve the denoising performance. Block Matching and 3D (BM3D) filtering is the current state-of-the-art algorithm in image denoising and can provide better denoising performance than other existing methods. However, still, there is scope to improve the performance of BM3D. In this thesis, we have pointed out some of the significant aspects of this algorithm which can be improved and also suggested some approaches to get better denoising performance. We have suggested using an adaptive window size rather than the fixed window size. In addition, we have also suggested using gradient image in the blockmatching step to better facilitate the similar patch searching. Experimental results show that our suggested approaches can produce better results than BM3D irrespective of the types of image

    Computationally efficient locally adaptive demosaicing of color filter array images using the dual-tree complex wavelet packet transform

    Get PDF
    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches

    Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Get PDF
    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR

    Optimum receiver design for broadband Doppler compensation in multipath/Doppler channels with rational orthogonal wavelet signaling

    Get PDF
    Copyright © 2007 IEEEIn this paper, we address the issue of signal transmission and Doppler compensation in multipath/Doppler channels. Based on a wavelet-based broadband Doppler compensation structure, this paper presents the design and performance characterization of optimum receivers for this class of communication systems. The wavelet-based Doppler compensation structure takes account of the coexistence of multiple Doppler scales in a multipath/Doppler channel and captures the information carried by multiple scaled replicas of the transmitted signal rather than an estimation of an average Doppler as in conventional Doppler compensation schemes. The transmitted signal is recovered by the perfect reconstruction (PR) wavelet analysis filter bank (FB). We demonstrate that with rational orthogonal wavelet signaling, the proposed communication structure corresponds to a Lth-order diversity system, where L is the number of dominant transmission paths. Two receiver designs for pulse amplitude modulation (PAM) signal transmission are presented. Both receiver designs are optimal under the maximum-likelihood (ML) criterion for diversity combination and symbol detection. Good performance is achieved for both receivers in combating the Doppler effect and intersymbol interference (ISI) caused by multipath while mitigating the channel noise. In particular, the second receiver design overcomes symbol timing sensitivities present in the first design at reasonable cost to performance.Limin Yu and Langford B. Whit

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Kombinacija vremensko-frekvencijske analize signala i strojnoga učenja uz primjer u detekciji gravitacijskih valova

    Get PDF
    This paper presents a method for classifying noisy, non-stationary signals in the time-frequency domain using artificial intelligence. The preprocessed time-series signals are transformed into time-frequency representations (TFrs) from Cohen’s class resulting in the TFr images, which are used as input to the machine learning algorithms. We have used three state-of-the-art deep-learning 2d convolutional neural network (Cnn) architectures (ResNet-101, Xception, and EfficientNet). The method was demonstrated on the challenging task of detecting gravitational-wave (gw) signals in intensive real-life, non-stationary, non-gaussian, and non-white noise. The results show excellent classification performance of the proposed approach in terms of classification accuracy, area under the receiver operating characteristic curve (roC auC), recall, precision, F1 score, and area under the precision-recall curve (PR AUC). The novel method outperforms the baseline machine learning model trained on the time-series data in terms of all considered metrics. The study indicates that the proposed technique can also be extended to various other applications dealing with non-stationary data in intensive noise.Ovaj rad predstavlja metodu klasifikacije šumom narušenih nestacionarnih signala u vremensko-frekvencijskoj domeni korištenjem umjetne inteligencije. Naime, signali u obliku vremenskih nizova transformirani su nakon predobrade u vremensko-frekvencijske prikaze (TFR) iz Cohenove klase, rezultirajući TFR slikama korištenim kao ulaz u algoritme strojnoga učenja. Korištene su tri suvremene metode dubokoga učenja u obliku 2D arhitektura konvolucijskih neuronskih mreža (CNN) (ResNet-101, Xception i EfficientNet). Metoda je demonstrirana na zahtjevnom problemu detekcije signala gravitacijskih valova (GW) u intenzivnom stvarnom i nestacionarnom šumu koji nema karakteristike ni Gaussovog ni bijelog šuma. Rezultati pokazuju izvrsne performanse klasifikacije predloženoga pristupa s obzirom na točnost klasifikacije, površinu ispod krivulje značajke djelovanja prijamnika (ROC AUC), odziv, preciznost, F1-mjeru i površinu ispod krivulje preciznost-odziv (PR AUC). Nova metoda nadmašuje osnovni model strojnoga učenja treniran na podatcima u obliku vremenskih nizova s obzirom na razmatrane metrike. Istraživanje pokazuje da se predložena tehnika može proširiti i na različite druge primjene koje uključuju nestacionarne podatke u intenzivnom šumu
    corecore